Metamath Proof Explorer


Theorem expge0d

Description: A nonnegative real raised to a nonnegative integer is nonnegative. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses reexpcld.1
|- ( ph -> A e. RR )
reexpcld.2
|- ( ph -> N e. NN0 )
expge0d.3
|- ( ph -> 0 <_ A )
Assertion expge0d
|- ( ph -> 0 <_ ( A ^ N ) )

Proof

Step Hyp Ref Expression
1 reexpcld.1
 |-  ( ph -> A e. RR )
2 reexpcld.2
 |-  ( ph -> N e. NN0 )
3 expge0d.3
 |-  ( ph -> 0 <_ A )
4 expge0
 |-  ( ( A e. RR /\ N e. NN0 /\ 0 <_ A ) -> 0 <_ ( A ^ N ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> 0 <_ ( A ^ N ) )