Step |
Hyp |
Ref |
Expression |
1 |
|
expghm.m |
|- M = ( mulGrp ` CCfld ) |
2 |
|
expghm.u |
|- U = ( M |`s ( CC \ { 0 } ) ) |
3 |
|
expclzlem |
|- ( ( A e. CC /\ A =/= 0 /\ x e. ZZ ) -> ( A ^ x ) e. ( CC \ { 0 } ) ) |
4 |
3
|
3expa |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ x e. ZZ ) -> ( A ^ x ) e. ( CC \ { 0 } ) ) |
5 |
4
|
fmpttd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( x e. ZZ |-> ( A ^ x ) ) : ZZ --> ( CC \ { 0 } ) ) |
6 |
|
expaddz |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( A ^ ( y + z ) ) = ( ( A ^ y ) x. ( A ^ z ) ) ) |
7 |
|
zaddcl |
|- ( ( y e. ZZ /\ z e. ZZ ) -> ( y + z ) e. ZZ ) |
8 |
7
|
adantl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( y + z ) e. ZZ ) |
9 |
|
oveq2 |
|- ( x = ( y + z ) -> ( A ^ x ) = ( A ^ ( y + z ) ) ) |
10 |
|
eqid |
|- ( x e. ZZ |-> ( A ^ x ) ) = ( x e. ZZ |-> ( A ^ x ) ) |
11 |
|
ovex |
|- ( A ^ ( y + z ) ) e. _V |
12 |
9 10 11
|
fvmpt |
|- ( ( y + z ) e. ZZ -> ( ( x e. ZZ |-> ( A ^ x ) ) ` ( y + z ) ) = ( A ^ ( y + z ) ) ) |
13 |
8 12
|
syl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( x e. ZZ |-> ( A ^ x ) ) ` ( y + z ) ) = ( A ^ ( y + z ) ) ) |
14 |
|
oveq2 |
|- ( x = y -> ( A ^ x ) = ( A ^ y ) ) |
15 |
|
ovex |
|- ( A ^ y ) e. _V |
16 |
14 10 15
|
fvmpt |
|- ( y e. ZZ -> ( ( x e. ZZ |-> ( A ^ x ) ) ` y ) = ( A ^ y ) ) |
17 |
|
oveq2 |
|- ( x = z -> ( A ^ x ) = ( A ^ z ) ) |
18 |
|
ovex |
|- ( A ^ z ) e. _V |
19 |
17 10 18
|
fvmpt |
|- ( z e. ZZ -> ( ( x e. ZZ |-> ( A ^ x ) ) ` z ) = ( A ^ z ) ) |
20 |
16 19
|
oveqan12d |
|- ( ( y e. ZZ /\ z e. ZZ ) -> ( ( ( x e. ZZ |-> ( A ^ x ) ) ` y ) x. ( ( x e. ZZ |-> ( A ^ x ) ) ` z ) ) = ( ( A ^ y ) x. ( A ^ z ) ) ) |
21 |
20
|
adantl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( ( x e. ZZ |-> ( A ^ x ) ) ` y ) x. ( ( x e. ZZ |-> ( A ^ x ) ) ` z ) ) = ( ( A ^ y ) x. ( A ^ z ) ) ) |
22 |
6 13 21
|
3eqtr4d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( y e. ZZ /\ z e. ZZ ) ) -> ( ( x e. ZZ |-> ( A ^ x ) ) ` ( y + z ) ) = ( ( ( x e. ZZ |-> ( A ^ x ) ) ` y ) x. ( ( x e. ZZ |-> ( A ^ x ) ) ` z ) ) ) |
23 |
22
|
ralrimivva |
|- ( ( A e. CC /\ A =/= 0 ) -> A. y e. ZZ A. z e. ZZ ( ( x e. ZZ |-> ( A ^ x ) ) ` ( y + z ) ) = ( ( ( x e. ZZ |-> ( A ^ x ) ) ` y ) x. ( ( x e. ZZ |-> ( A ^ x ) ) ` z ) ) ) |
24 |
|
zringgrp |
|- ZZring e. Grp |
25 |
|
cnring |
|- CCfld e. Ring |
26 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
27 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
28 |
|
cndrng |
|- CCfld e. DivRing |
29 |
26 27 28
|
drngui |
|- ( CC \ { 0 } ) = ( Unit ` CCfld ) |
30 |
1
|
oveq1i |
|- ( M |`s ( CC \ { 0 } ) ) = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
31 |
2 30
|
eqtri |
|- U = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
32 |
29 31
|
unitgrp |
|- ( CCfld e. Ring -> U e. Grp ) |
33 |
25 32
|
ax-mp |
|- U e. Grp |
34 |
24 33
|
pm3.2i |
|- ( ZZring e. Grp /\ U e. Grp ) |
35 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
36 |
|
difss |
|- ( CC \ { 0 } ) C_ CC |
37 |
1 26
|
mgpbas |
|- CC = ( Base ` M ) |
38 |
2 37
|
ressbas2 |
|- ( ( CC \ { 0 } ) C_ CC -> ( CC \ { 0 } ) = ( Base ` U ) ) |
39 |
36 38
|
ax-mp |
|- ( CC \ { 0 } ) = ( Base ` U ) |
40 |
|
zringplusg |
|- + = ( +g ` ZZring ) |
41 |
29
|
fvexi |
|- ( CC \ { 0 } ) e. _V |
42 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
43 |
1 42
|
mgpplusg |
|- x. = ( +g ` M ) |
44 |
2 43
|
ressplusg |
|- ( ( CC \ { 0 } ) e. _V -> x. = ( +g ` U ) ) |
45 |
41 44
|
ax-mp |
|- x. = ( +g ` U ) |
46 |
35 39 40 45
|
isghm |
|- ( ( x e. ZZ |-> ( A ^ x ) ) e. ( ZZring GrpHom U ) <-> ( ( ZZring e. Grp /\ U e. Grp ) /\ ( ( x e. ZZ |-> ( A ^ x ) ) : ZZ --> ( CC \ { 0 } ) /\ A. y e. ZZ A. z e. ZZ ( ( x e. ZZ |-> ( A ^ x ) ) ` ( y + z ) ) = ( ( ( x e. ZZ |-> ( A ^ x ) ) ` y ) x. ( ( x e. ZZ |-> ( A ^ x ) ) ` z ) ) ) ) ) |
47 |
34 46
|
mpbiran |
|- ( ( x e. ZZ |-> ( A ^ x ) ) e. ( ZZring GrpHom U ) <-> ( ( x e. ZZ |-> ( A ^ x ) ) : ZZ --> ( CC \ { 0 } ) /\ A. y e. ZZ A. z e. ZZ ( ( x e. ZZ |-> ( A ^ x ) ) ` ( y + z ) ) = ( ( ( x e. ZZ |-> ( A ^ x ) ) ` y ) x. ( ( x e. ZZ |-> ( A ^ x ) ) ` z ) ) ) ) |
48 |
5 23 47
|
sylanbrc |
|- ( ( A e. CC /\ A =/= 0 ) -> ( x e. ZZ |-> ( A ^ x ) ) e. ( ZZring GrpHom U ) ) |