| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re |  |-  1 e. RR | 
						
							| 2 | 1 | a1i |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 e. RR ) | 
						
							| 3 |  | simp1 |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> A e. RR ) | 
						
							| 4 |  | simp2 |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> N e. NN ) | 
						
							| 5 | 4 | nnnn0d |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> N e. NN0 ) | 
						
							| 6 |  | reexpcl |  |-  ( ( A e. RR /\ N e. NN0 ) -> ( A ^ N ) e. RR ) | 
						
							| 7 | 3 5 6 | syl2anc |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( A ^ N ) e. RR ) | 
						
							| 8 |  | simp3 |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 < A ) | 
						
							| 9 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 10 | 4 9 | syl |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( N - 1 ) e. NN0 ) | 
						
							| 11 |  | ltle |  |-  ( ( 1 e. RR /\ A e. RR ) -> ( 1 < A -> 1 <_ A ) ) | 
						
							| 12 | 1 3 11 | sylancr |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( 1 < A -> 1 <_ A ) ) | 
						
							| 13 | 8 12 | mpd |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 <_ A ) | 
						
							| 14 |  | expge1 |  |-  ( ( A e. RR /\ ( N - 1 ) e. NN0 /\ 1 <_ A ) -> 1 <_ ( A ^ ( N - 1 ) ) ) | 
						
							| 15 | 3 10 13 14 | syl3anc |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 <_ ( A ^ ( N - 1 ) ) ) | 
						
							| 16 |  | reexpcl |  |-  ( ( A e. RR /\ ( N - 1 ) e. NN0 ) -> ( A ^ ( N - 1 ) ) e. RR ) | 
						
							| 17 | 3 10 16 | syl2anc |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( A ^ ( N - 1 ) ) e. RR ) | 
						
							| 18 |  | 0red |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 0 e. RR ) | 
						
							| 19 |  | 0lt1 |  |-  0 < 1 | 
						
							| 20 | 19 | a1i |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 0 < 1 ) | 
						
							| 21 | 18 2 3 20 8 | lttrd |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 0 < A ) | 
						
							| 22 |  | lemul1 |  |-  ( ( 1 e. RR /\ ( A ^ ( N - 1 ) ) e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( 1 <_ ( A ^ ( N - 1 ) ) <-> ( 1 x. A ) <_ ( ( A ^ ( N - 1 ) ) x. A ) ) ) | 
						
							| 23 | 2 17 3 21 22 | syl112anc |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( 1 <_ ( A ^ ( N - 1 ) ) <-> ( 1 x. A ) <_ ( ( A ^ ( N - 1 ) ) x. A ) ) ) | 
						
							| 24 | 15 23 | mpbid |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( 1 x. A ) <_ ( ( A ^ ( N - 1 ) ) x. A ) ) | 
						
							| 25 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 26 | 25 | 3ad2ant1 |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> A e. CC ) | 
						
							| 27 | 26 | mullidd |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( 1 x. A ) = A ) | 
						
							| 28 | 27 | eqcomd |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> A = ( 1 x. A ) ) | 
						
							| 29 |  | expm1t |  |-  ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( ( A ^ ( N - 1 ) ) x. A ) ) | 
						
							| 30 | 26 4 29 | syl2anc |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( A ^ N ) = ( ( A ^ ( N - 1 ) ) x. A ) ) | 
						
							| 31 | 24 28 30 | 3brtr4d |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> A <_ ( A ^ N ) ) | 
						
							| 32 | 2 3 7 8 31 | ltletrd |  |-  ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 < ( A ^ N ) ) |