Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
|- 1 e. RR |
2 |
1
|
a1i |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 e. RR ) |
3 |
|
simp1 |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> A e. RR ) |
4 |
|
simp2 |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> N e. NN ) |
5 |
4
|
nnnn0d |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> N e. NN0 ) |
6 |
|
reexpcl |
|- ( ( A e. RR /\ N e. NN0 ) -> ( A ^ N ) e. RR ) |
7 |
3 5 6
|
syl2anc |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( A ^ N ) e. RR ) |
8 |
|
simp3 |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 < A ) |
9 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
10 |
4 9
|
syl |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( N - 1 ) e. NN0 ) |
11 |
|
ltle |
|- ( ( 1 e. RR /\ A e. RR ) -> ( 1 < A -> 1 <_ A ) ) |
12 |
1 3 11
|
sylancr |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( 1 < A -> 1 <_ A ) ) |
13 |
8 12
|
mpd |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 <_ A ) |
14 |
|
expge1 |
|- ( ( A e. RR /\ ( N - 1 ) e. NN0 /\ 1 <_ A ) -> 1 <_ ( A ^ ( N - 1 ) ) ) |
15 |
3 10 13 14
|
syl3anc |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 <_ ( A ^ ( N - 1 ) ) ) |
16 |
|
reexpcl |
|- ( ( A e. RR /\ ( N - 1 ) e. NN0 ) -> ( A ^ ( N - 1 ) ) e. RR ) |
17 |
3 10 16
|
syl2anc |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( A ^ ( N - 1 ) ) e. RR ) |
18 |
|
0red |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 0 e. RR ) |
19 |
|
0lt1 |
|- 0 < 1 |
20 |
19
|
a1i |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 0 < 1 ) |
21 |
18 2 3 20 8
|
lttrd |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 0 < A ) |
22 |
|
lemul1 |
|- ( ( 1 e. RR /\ ( A ^ ( N - 1 ) ) e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( 1 <_ ( A ^ ( N - 1 ) ) <-> ( 1 x. A ) <_ ( ( A ^ ( N - 1 ) ) x. A ) ) ) |
23 |
2 17 3 21 22
|
syl112anc |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( 1 <_ ( A ^ ( N - 1 ) ) <-> ( 1 x. A ) <_ ( ( A ^ ( N - 1 ) ) x. A ) ) ) |
24 |
15 23
|
mpbid |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( 1 x. A ) <_ ( ( A ^ ( N - 1 ) ) x. A ) ) |
25 |
|
recn |
|- ( A e. RR -> A e. CC ) |
26 |
25
|
3ad2ant1 |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> A e. CC ) |
27 |
26
|
mulid2d |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( 1 x. A ) = A ) |
28 |
27
|
eqcomd |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> A = ( 1 x. A ) ) |
29 |
|
expm1t |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( ( A ^ ( N - 1 ) ) x. A ) ) |
30 |
26 4 29
|
syl2anc |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> ( A ^ N ) = ( ( A ^ ( N - 1 ) ) x. A ) ) |
31 |
24 28 30
|
3brtr4d |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> A <_ ( A ^ N ) ) |
32 |
2 3 7 8 31
|
ltletrd |
|- ( ( A e. RR /\ N e. NN /\ 1 < A ) -> 1 < ( A ^ N ) ) |