Step |
Hyp |
Ref |
Expression |
1 |
|
logcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
2 |
|
efexp |
|- ( ( ( log ` A ) e. CC /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( ( exp ` ( log ` A ) ) ^ N ) ) |
3 |
1 2
|
stoic3 |
|- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( exp ` ( N x. ( log ` A ) ) ) = ( ( exp ` ( log ` A ) ) ^ N ) ) |
4 |
|
eflog |
|- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
5 |
4
|
3adant3 |
|- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( exp ` ( log ` A ) ) = A ) |
6 |
5
|
oveq1d |
|- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( ( exp ` ( log ` A ) ) ^ N ) = ( A ^ N ) ) |
7 |
3 6
|
eqtr2d |
|- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) = ( exp ` ( N x. ( log ` A ) ) ) ) |