Step |
Hyp |
Ref |
Expression |
1 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
2 |
|
ax-1cn |
|- 1 e. CC |
3 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
4 |
1 2 3
|
sylancl |
|- ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) |
5 |
4
|
oveq2d |
|- ( N e. NN -> ( A ^ ( ( N - 1 ) + 1 ) ) = ( A ^ N ) ) |
6 |
5
|
adantl |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ ( ( N - 1 ) + 1 ) ) = ( A ^ N ) ) |
7 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
8 |
|
expp1 |
|- ( ( A e. CC /\ ( N - 1 ) e. NN0 ) -> ( A ^ ( ( N - 1 ) + 1 ) ) = ( ( A ^ ( N - 1 ) ) x. A ) ) |
9 |
7 8
|
sylan2 |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ ( ( N - 1 ) + 1 ) ) = ( ( A ^ ( N - 1 ) ) x. A ) ) |
10 |
6 9
|
eqtr3d |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( ( A ^ ( N - 1 ) ) x. A ) ) |