Step |
Hyp |
Ref |
Expression |
1 |
|
expmhm.1 |
|- N = ( CCfld |`s NN0 ) |
2 |
|
expmhm.2 |
|- M = ( mulGrp ` CCfld ) |
3 |
|
expcl |
|- ( ( A e. CC /\ x e. NN0 ) -> ( A ^ x ) e. CC ) |
4 |
3
|
fmpttd |
|- ( A e. CC -> ( x e. NN0 |-> ( A ^ x ) ) : NN0 --> CC ) |
5 |
|
expadd |
|- ( ( A e. CC /\ y e. NN0 /\ z e. NN0 ) -> ( A ^ ( y + z ) ) = ( ( A ^ y ) x. ( A ^ z ) ) ) |
6 |
5
|
3expb |
|- ( ( A e. CC /\ ( y e. NN0 /\ z e. NN0 ) ) -> ( A ^ ( y + z ) ) = ( ( A ^ y ) x. ( A ^ z ) ) ) |
7 |
|
nn0addcl |
|- ( ( y e. NN0 /\ z e. NN0 ) -> ( y + z ) e. NN0 ) |
8 |
7
|
adantl |
|- ( ( A e. CC /\ ( y e. NN0 /\ z e. NN0 ) ) -> ( y + z ) e. NN0 ) |
9 |
|
oveq2 |
|- ( x = ( y + z ) -> ( A ^ x ) = ( A ^ ( y + z ) ) ) |
10 |
|
eqid |
|- ( x e. NN0 |-> ( A ^ x ) ) = ( x e. NN0 |-> ( A ^ x ) ) |
11 |
|
ovex |
|- ( A ^ ( y + z ) ) e. _V |
12 |
9 10 11
|
fvmpt |
|- ( ( y + z ) e. NN0 -> ( ( x e. NN0 |-> ( A ^ x ) ) ` ( y + z ) ) = ( A ^ ( y + z ) ) ) |
13 |
8 12
|
syl |
|- ( ( A e. CC /\ ( y e. NN0 /\ z e. NN0 ) ) -> ( ( x e. NN0 |-> ( A ^ x ) ) ` ( y + z ) ) = ( A ^ ( y + z ) ) ) |
14 |
|
oveq2 |
|- ( x = y -> ( A ^ x ) = ( A ^ y ) ) |
15 |
|
ovex |
|- ( A ^ y ) e. _V |
16 |
14 10 15
|
fvmpt |
|- ( y e. NN0 -> ( ( x e. NN0 |-> ( A ^ x ) ) ` y ) = ( A ^ y ) ) |
17 |
|
oveq2 |
|- ( x = z -> ( A ^ x ) = ( A ^ z ) ) |
18 |
|
ovex |
|- ( A ^ z ) e. _V |
19 |
17 10 18
|
fvmpt |
|- ( z e. NN0 -> ( ( x e. NN0 |-> ( A ^ x ) ) ` z ) = ( A ^ z ) ) |
20 |
16 19
|
oveqan12d |
|- ( ( y e. NN0 /\ z e. NN0 ) -> ( ( ( x e. NN0 |-> ( A ^ x ) ) ` y ) x. ( ( x e. NN0 |-> ( A ^ x ) ) ` z ) ) = ( ( A ^ y ) x. ( A ^ z ) ) ) |
21 |
20
|
adantl |
|- ( ( A e. CC /\ ( y e. NN0 /\ z e. NN0 ) ) -> ( ( ( x e. NN0 |-> ( A ^ x ) ) ` y ) x. ( ( x e. NN0 |-> ( A ^ x ) ) ` z ) ) = ( ( A ^ y ) x. ( A ^ z ) ) ) |
22 |
6 13 21
|
3eqtr4d |
|- ( ( A e. CC /\ ( y e. NN0 /\ z e. NN0 ) ) -> ( ( x e. NN0 |-> ( A ^ x ) ) ` ( y + z ) ) = ( ( ( x e. NN0 |-> ( A ^ x ) ) ` y ) x. ( ( x e. NN0 |-> ( A ^ x ) ) ` z ) ) ) |
23 |
22
|
ralrimivva |
|- ( A e. CC -> A. y e. NN0 A. z e. NN0 ( ( x e. NN0 |-> ( A ^ x ) ) ` ( y + z ) ) = ( ( ( x e. NN0 |-> ( A ^ x ) ) ` y ) x. ( ( x e. NN0 |-> ( A ^ x ) ) ` z ) ) ) |
24 |
|
0nn0 |
|- 0 e. NN0 |
25 |
|
oveq2 |
|- ( x = 0 -> ( A ^ x ) = ( A ^ 0 ) ) |
26 |
|
ovex |
|- ( A ^ 0 ) e. _V |
27 |
25 10 26
|
fvmpt |
|- ( 0 e. NN0 -> ( ( x e. NN0 |-> ( A ^ x ) ) ` 0 ) = ( A ^ 0 ) ) |
28 |
24 27
|
ax-mp |
|- ( ( x e. NN0 |-> ( A ^ x ) ) ` 0 ) = ( A ^ 0 ) |
29 |
|
exp0 |
|- ( A e. CC -> ( A ^ 0 ) = 1 ) |
30 |
28 29
|
eqtrid |
|- ( A e. CC -> ( ( x e. NN0 |-> ( A ^ x ) ) ` 0 ) = 1 ) |
31 |
|
nn0subm |
|- NN0 e. ( SubMnd ` CCfld ) |
32 |
1
|
submmnd |
|- ( NN0 e. ( SubMnd ` CCfld ) -> N e. Mnd ) |
33 |
31 32
|
ax-mp |
|- N e. Mnd |
34 |
|
cnring |
|- CCfld e. Ring |
35 |
2
|
ringmgp |
|- ( CCfld e. Ring -> M e. Mnd ) |
36 |
34 35
|
ax-mp |
|- M e. Mnd |
37 |
33 36
|
pm3.2i |
|- ( N e. Mnd /\ M e. Mnd ) |
38 |
1
|
submbas |
|- ( NN0 e. ( SubMnd ` CCfld ) -> NN0 = ( Base ` N ) ) |
39 |
31 38
|
ax-mp |
|- NN0 = ( Base ` N ) |
40 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
41 |
2 40
|
mgpbas |
|- CC = ( Base ` M ) |
42 |
|
cnfldadd |
|- + = ( +g ` CCfld ) |
43 |
1 42
|
ressplusg |
|- ( NN0 e. ( SubMnd ` CCfld ) -> + = ( +g ` N ) ) |
44 |
31 43
|
ax-mp |
|- + = ( +g ` N ) |
45 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
46 |
2 45
|
mgpplusg |
|- x. = ( +g ` M ) |
47 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
48 |
1 47
|
subm0 |
|- ( NN0 e. ( SubMnd ` CCfld ) -> 0 = ( 0g ` N ) ) |
49 |
31 48
|
ax-mp |
|- 0 = ( 0g ` N ) |
50 |
|
cnfld1 |
|- 1 = ( 1r ` CCfld ) |
51 |
2 50
|
ringidval |
|- 1 = ( 0g ` M ) |
52 |
39 41 44 46 49 51
|
ismhm |
|- ( ( x e. NN0 |-> ( A ^ x ) ) e. ( N MndHom M ) <-> ( ( N e. Mnd /\ M e. Mnd ) /\ ( ( x e. NN0 |-> ( A ^ x ) ) : NN0 --> CC /\ A. y e. NN0 A. z e. NN0 ( ( x e. NN0 |-> ( A ^ x ) ) ` ( y + z ) ) = ( ( ( x e. NN0 |-> ( A ^ x ) ) ` y ) x. ( ( x e. NN0 |-> ( A ^ x ) ) ` z ) ) /\ ( ( x e. NN0 |-> ( A ^ x ) ) ` 0 ) = 1 ) ) ) |
53 |
37 52
|
mpbiran |
|- ( ( x e. NN0 |-> ( A ^ x ) ) e. ( N MndHom M ) <-> ( ( x e. NN0 |-> ( A ^ x ) ) : NN0 --> CC /\ A. y e. NN0 A. z e. NN0 ( ( x e. NN0 |-> ( A ^ x ) ) ` ( y + z ) ) = ( ( ( x e. NN0 |-> ( A ^ x ) ) ` y ) x. ( ( x e. NN0 |-> ( A ^ x ) ) ` z ) ) /\ ( ( x e. NN0 |-> ( A ^ x ) ) ` 0 ) = 1 ) ) |
54 |
4 23 30 53
|
syl3anbrc |
|- ( A e. CC -> ( x e. NN0 |-> ( A ^ x ) ) e. ( N MndHom M ) ) |