Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( a = 1 -> ( A ^ a ) = ( A ^ 1 ) ) |
2 |
|
oveq2 |
|- ( a = 1 -> ( B ^ a ) = ( B ^ 1 ) ) |
3 |
1 2
|
breq12d |
|- ( a = 1 -> ( ( A ^ a ) < ( B ^ a ) <-> ( A ^ 1 ) < ( B ^ 1 ) ) ) |
4 |
3
|
imbi2d |
|- ( a = 1 -> ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ a ) < ( B ^ a ) ) <-> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ 1 ) < ( B ^ 1 ) ) ) ) |
5 |
|
oveq2 |
|- ( a = b -> ( A ^ a ) = ( A ^ b ) ) |
6 |
|
oveq2 |
|- ( a = b -> ( B ^ a ) = ( B ^ b ) ) |
7 |
5 6
|
breq12d |
|- ( a = b -> ( ( A ^ a ) < ( B ^ a ) <-> ( A ^ b ) < ( B ^ b ) ) ) |
8 |
7
|
imbi2d |
|- ( a = b -> ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ a ) < ( B ^ a ) ) <-> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ b ) < ( B ^ b ) ) ) ) |
9 |
|
oveq2 |
|- ( a = ( b + 1 ) -> ( A ^ a ) = ( A ^ ( b + 1 ) ) ) |
10 |
|
oveq2 |
|- ( a = ( b + 1 ) -> ( B ^ a ) = ( B ^ ( b + 1 ) ) ) |
11 |
9 10
|
breq12d |
|- ( a = ( b + 1 ) -> ( ( A ^ a ) < ( B ^ a ) <-> ( A ^ ( b + 1 ) ) < ( B ^ ( b + 1 ) ) ) ) |
12 |
11
|
imbi2d |
|- ( a = ( b + 1 ) -> ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ a ) < ( B ^ a ) ) <-> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ ( b + 1 ) ) < ( B ^ ( b + 1 ) ) ) ) ) |
13 |
|
oveq2 |
|- ( a = N -> ( A ^ a ) = ( A ^ N ) ) |
14 |
|
oveq2 |
|- ( a = N -> ( B ^ a ) = ( B ^ N ) ) |
15 |
13 14
|
breq12d |
|- ( a = N -> ( ( A ^ a ) < ( B ^ a ) <-> ( A ^ N ) < ( B ^ N ) ) ) |
16 |
15
|
imbi2d |
|- ( a = N -> ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ a ) < ( B ^ a ) ) <-> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ N ) < ( B ^ N ) ) ) ) |
17 |
|
recn |
|- ( A e. RR -> A e. CC ) |
18 |
|
recn |
|- ( B e. RR -> B e. CC ) |
19 |
|
exp1 |
|- ( A e. CC -> ( A ^ 1 ) = A ) |
20 |
|
exp1 |
|- ( B e. CC -> ( B ^ 1 ) = B ) |
21 |
19 20
|
breqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 1 ) < ( B ^ 1 ) <-> A < B ) ) |
22 |
17 18 21
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A ^ 1 ) < ( B ^ 1 ) <-> A < B ) ) |
23 |
22
|
biimpar |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> ( A ^ 1 ) < ( B ^ 1 ) ) |
24 |
23
|
adantrl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ 1 ) < ( B ^ 1 ) ) |
25 |
|
simp2ll |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> A e. RR ) |
26 |
|
nnnn0 |
|- ( b e. NN -> b e. NN0 ) |
27 |
26
|
3ad2ant1 |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> b e. NN0 ) |
28 |
25 27
|
reexpcld |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( A ^ b ) e. RR ) |
29 |
|
simp2lr |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> B e. RR ) |
30 |
29 27
|
reexpcld |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( B ^ b ) e. RR ) |
31 |
28 30
|
jca |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( ( A ^ b ) e. RR /\ ( B ^ b ) e. RR ) ) |
32 |
|
simp2rl |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> 0 <_ A ) |
33 |
25 27 32
|
expge0d |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> 0 <_ ( A ^ b ) ) |
34 |
|
simp3 |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( A ^ b ) < ( B ^ b ) ) |
35 |
33 34
|
jca |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( 0 <_ ( A ^ b ) /\ ( A ^ b ) < ( B ^ b ) ) ) |
36 |
|
simp2l |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( A e. RR /\ B e. RR ) ) |
37 |
|
simp2r |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( 0 <_ A /\ A < B ) ) |
38 |
|
ltmul12a |
|- ( ( ( ( ( A ^ b ) e. RR /\ ( B ^ b ) e. RR ) /\ ( 0 <_ ( A ^ b ) /\ ( A ^ b ) < ( B ^ b ) ) ) /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) ) -> ( ( A ^ b ) x. A ) < ( ( B ^ b ) x. B ) ) |
39 |
31 35 36 37 38
|
syl22anc |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( ( A ^ b ) x. A ) < ( ( B ^ b ) x. B ) ) |
40 |
25
|
recnd |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> A e. CC ) |
41 |
40 27
|
expp1d |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( A ^ ( b + 1 ) ) = ( ( A ^ b ) x. A ) ) |
42 |
29
|
recnd |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> B e. CC ) |
43 |
42 27
|
expp1d |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( B ^ ( b + 1 ) ) = ( ( B ^ b ) x. B ) ) |
44 |
39 41 43
|
3brtr4d |
|- ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( A ^ ( b + 1 ) ) < ( B ^ ( b + 1 ) ) ) |
45 |
44
|
3exp |
|- ( b e. NN -> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( ( A ^ b ) < ( B ^ b ) -> ( A ^ ( b + 1 ) ) < ( B ^ ( b + 1 ) ) ) ) ) |
46 |
45
|
a2d |
|- ( b e. NN -> ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ b ) < ( B ^ b ) ) -> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ ( b + 1 ) ) < ( B ^ ( b + 1 ) ) ) ) ) |
47 |
4 8 12 16 24 46
|
nnind |
|- ( N e. NN -> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ N ) < ( B ^ N ) ) ) |
48 |
47
|
impcom |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ N e. NN ) -> ( A ^ N ) < ( B ^ N ) ) |
49 |
48
|
3impa |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) /\ N e. NN ) -> ( A ^ N ) < ( B ^ N ) ) |