| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 |  |-  ( a = 1 -> ( A ^ a ) = ( A ^ 1 ) ) | 
						
							| 2 |  | oveq2 |  |-  ( a = 1 -> ( B ^ a ) = ( B ^ 1 ) ) | 
						
							| 3 | 1 2 | breq12d |  |-  ( a = 1 -> ( ( A ^ a ) < ( B ^ a ) <-> ( A ^ 1 ) < ( B ^ 1 ) ) ) | 
						
							| 4 | 3 | imbi2d |  |-  ( a = 1 -> ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ a ) < ( B ^ a ) ) <-> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ 1 ) < ( B ^ 1 ) ) ) ) | 
						
							| 5 |  | oveq2 |  |-  ( a = b -> ( A ^ a ) = ( A ^ b ) ) | 
						
							| 6 |  | oveq2 |  |-  ( a = b -> ( B ^ a ) = ( B ^ b ) ) | 
						
							| 7 | 5 6 | breq12d |  |-  ( a = b -> ( ( A ^ a ) < ( B ^ a ) <-> ( A ^ b ) < ( B ^ b ) ) ) | 
						
							| 8 | 7 | imbi2d |  |-  ( a = b -> ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ a ) < ( B ^ a ) ) <-> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ b ) < ( B ^ b ) ) ) ) | 
						
							| 9 |  | oveq2 |  |-  ( a = ( b + 1 ) -> ( A ^ a ) = ( A ^ ( b + 1 ) ) ) | 
						
							| 10 |  | oveq2 |  |-  ( a = ( b + 1 ) -> ( B ^ a ) = ( B ^ ( b + 1 ) ) ) | 
						
							| 11 | 9 10 | breq12d |  |-  ( a = ( b + 1 ) -> ( ( A ^ a ) < ( B ^ a ) <-> ( A ^ ( b + 1 ) ) < ( B ^ ( b + 1 ) ) ) ) | 
						
							| 12 | 11 | imbi2d |  |-  ( a = ( b + 1 ) -> ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ a ) < ( B ^ a ) ) <-> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ ( b + 1 ) ) < ( B ^ ( b + 1 ) ) ) ) ) | 
						
							| 13 |  | oveq2 |  |-  ( a = N -> ( A ^ a ) = ( A ^ N ) ) | 
						
							| 14 |  | oveq2 |  |-  ( a = N -> ( B ^ a ) = ( B ^ N ) ) | 
						
							| 15 | 13 14 | breq12d |  |-  ( a = N -> ( ( A ^ a ) < ( B ^ a ) <-> ( A ^ N ) < ( B ^ N ) ) ) | 
						
							| 16 | 15 | imbi2d |  |-  ( a = N -> ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ a ) < ( B ^ a ) ) <-> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ N ) < ( B ^ N ) ) ) ) | 
						
							| 17 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 18 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 19 |  | exp1 |  |-  ( A e. CC -> ( A ^ 1 ) = A ) | 
						
							| 20 |  | exp1 |  |-  ( B e. CC -> ( B ^ 1 ) = B ) | 
						
							| 21 | 19 20 | breqan12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 1 ) < ( B ^ 1 ) <-> A < B ) ) | 
						
							| 22 | 17 18 21 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A ^ 1 ) < ( B ^ 1 ) <-> A < B ) ) | 
						
							| 23 | 22 | biimpar |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> ( A ^ 1 ) < ( B ^ 1 ) ) | 
						
							| 24 | 23 | adantrl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ 1 ) < ( B ^ 1 ) ) | 
						
							| 25 |  | simp2ll |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> A e. RR ) | 
						
							| 26 |  | nnnn0 |  |-  ( b e. NN -> b e. NN0 ) | 
						
							| 27 | 26 | 3ad2ant1 |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> b e. NN0 ) | 
						
							| 28 | 25 27 | reexpcld |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( A ^ b ) e. RR ) | 
						
							| 29 |  | simp2lr |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> B e. RR ) | 
						
							| 30 | 29 27 | reexpcld |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( B ^ b ) e. RR ) | 
						
							| 31 | 28 30 | jca |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( ( A ^ b ) e. RR /\ ( B ^ b ) e. RR ) ) | 
						
							| 32 |  | simp2rl |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> 0 <_ A ) | 
						
							| 33 | 25 27 32 | expge0d |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> 0 <_ ( A ^ b ) ) | 
						
							| 34 |  | simp3 |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( A ^ b ) < ( B ^ b ) ) | 
						
							| 35 | 33 34 | jca |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( 0 <_ ( A ^ b ) /\ ( A ^ b ) < ( B ^ b ) ) ) | 
						
							| 36 |  | simp2l |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( A e. RR /\ B e. RR ) ) | 
						
							| 37 |  | simp2r |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( 0 <_ A /\ A < B ) ) | 
						
							| 38 |  | ltmul12a |  |-  ( ( ( ( ( A ^ b ) e. RR /\ ( B ^ b ) e. RR ) /\ ( 0 <_ ( A ^ b ) /\ ( A ^ b ) < ( B ^ b ) ) ) /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) ) -> ( ( A ^ b ) x. A ) < ( ( B ^ b ) x. B ) ) | 
						
							| 39 | 31 35 36 37 38 | syl22anc |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( ( A ^ b ) x. A ) < ( ( B ^ b ) x. B ) ) | 
						
							| 40 | 25 | recnd |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> A e. CC ) | 
						
							| 41 | 40 27 | expp1d |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( A ^ ( b + 1 ) ) = ( ( A ^ b ) x. A ) ) | 
						
							| 42 | 29 | recnd |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> B e. CC ) | 
						
							| 43 | 42 27 | expp1d |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( B ^ ( b + 1 ) ) = ( ( B ^ b ) x. B ) ) | 
						
							| 44 | 39 41 43 | 3brtr4d |  |-  ( ( b e. NN /\ ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ ( A ^ b ) < ( B ^ b ) ) -> ( A ^ ( b + 1 ) ) < ( B ^ ( b + 1 ) ) ) | 
						
							| 45 | 44 | 3exp |  |-  ( b e. NN -> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( ( A ^ b ) < ( B ^ b ) -> ( A ^ ( b + 1 ) ) < ( B ^ ( b + 1 ) ) ) ) ) | 
						
							| 46 | 45 | a2d |  |-  ( b e. NN -> ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ b ) < ( B ^ b ) ) -> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ ( b + 1 ) ) < ( B ^ ( b + 1 ) ) ) ) ) | 
						
							| 47 | 4 8 12 16 24 46 | nnind |  |-  ( N e. NN -> ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) -> ( A ^ N ) < ( B ^ N ) ) ) | 
						
							| 48 | 47 | impcom |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) ) /\ N e. NN ) -> ( A ^ N ) < ( B ^ N ) ) | 
						
							| 49 | 48 | 3impa |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ A < B ) /\ N e. NN ) -> ( A ^ N ) < ( B ^ N ) ) |