Metamath Proof Explorer


Theorem expmul

Description: Product of exponents law for nonnegative integer exponentiation. Proposition 10-4.2(b) of Gleason p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 4-Jan-2006)

Ref Expression
Assertion expmul
|- ( ( A e. CC /\ M e. NN0 /\ N e. NN0 ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) )

Proof

Step Hyp Ref Expression
1 oveq2
 |-  ( j = 0 -> ( M x. j ) = ( M x. 0 ) )
2 1 oveq2d
 |-  ( j = 0 -> ( A ^ ( M x. j ) ) = ( A ^ ( M x. 0 ) ) )
3 oveq2
 |-  ( j = 0 -> ( ( A ^ M ) ^ j ) = ( ( A ^ M ) ^ 0 ) )
4 2 3 eqeq12d
 |-  ( j = 0 -> ( ( A ^ ( M x. j ) ) = ( ( A ^ M ) ^ j ) <-> ( A ^ ( M x. 0 ) ) = ( ( A ^ M ) ^ 0 ) ) )
5 4 imbi2d
 |-  ( j = 0 -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. j ) ) = ( ( A ^ M ) ^ j ) ) <-> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. 0 ) ) = ( ( A ^ M ) ^ 0 ) ) ) )
6 oveq2
 |-  ( j = k -> ( M x. j ) = ( M x. k ) )
7 6 oveq2d
 |-  ( j = k -> ( A ^ ( M x. j ) ) = ( A ^ ( M x. k ) ) )
8 oveq2
 |-  ( j = k -> ( ( A ^ M ) ^ j ) = ( ( A ^ M ) ^ k ) )
9 7 8 eqeq12d
 |-  ( j = k -> ( ( A ^ ( M x. j ) ) = ( ( A ^ M ) ^ j ) <-> ( A ^ ( M x. k ) ) = ( ( A ^ M ) ^ k ) ) )
10 9 imbi2d
 |-  ( j = k -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. j ) ) = ( ( A ^ M ) ^ j ) ) <-> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. k ) ) = ( ( A ^ M ) ^ k ) ) ) )
11 oveq2
 |-  ( j = ( k + 1 ) -> ( M x. j ) = ( M x. ( k + 1 ) ) )
12 11 oveq2d
 |-  ( j = ( k + 1 ) -> ( A ^ ( M x. j ) ) = ( A ^ ( M x. ( k + 1 ) ) ) )
13 oveq2
 |-  ( j = ( k + 1 ) -> ( ( A ^ M ) ^ j ) = ( ( A ^ M ) ^ ( k + 1 ) ) )
14 12 13 eqeq12d
 |-  ( j = ( k + 1 ) -> ( ( A ^ ( M x. j ) ) = ( ( A ^ M ) ^ j ) <-> ( A ^ ( M x. ( k + 1 ) ) ) = ( ( A ^ M ) ^ ( k + 1 ) ) ) )
15 14 imbi2d
 |-  ( j = ( k + 1 ) -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. j ) ) = ( ( A ^ M ) ^ j ) ) <-> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. ( k + 1 ) ) ) = ( ( A ^ M ) ^ ( k + 1 ) ) ) ) )
16 oveq2
 |-  ( j = N -> ( M x. j ) = ( M x. N ) )
17 16 oveq2d
 |-  ( j = N -> ( A ^ ( M x. j ) ) = ( A ^ ( M x. N ) ) )
18 oveq2
 |-  ( j = N -> ( ( A ^ M ) ^ j ) = ( ( A ^ M ) ^ N ) )
19 17 18 eqeq12d
 |-  ( j = N -> ( ( A ^ ( M x. j ) ) = ( ( A ^ M ) ^ j ) <-> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) )
20 19 imbi2d
 |-  ( j = N -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. j ) ) = ( ( A ^ M ) ^ j ) ) <-> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) ) )
21 nn0cn
 |-  ( M e. NN0 -> M e. CC )
22 21 mul01d
 |-  ( M e. NN0 -> ( M x. 0 ) = 0 )
23 22 oveq2d
 |-  ( M e. NN0 -> ( A ^ ( M x. 0 ) ) = ( A ^ 0 ) )
24 exp0
 |-  ( A e. CC -> ( A ^ 0 ) = 1 )
25 23 24 sylan9eqr
 |-  ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. 0 ) ) = 1 )
26 expcl
 |-  ( ( A e. CC /\ M e. NN0 ) -> ( A ^ M ) e. CC )
27 exp0
 |-  ( ( A ^ M ) e. CC -> ( ( A ^ M ) ^ 0 ) = 1 )
28 26 27 syl
 |-  ( ( A e. CC /\ M e. NN0 ) -> ( ( A ^ M ) ^ 0 ) = 1 )
29 25 28 eqtr4d
 |-  ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. 0 ) ) = ( ( A ^ M ) ^ 0 ) )
30 oveq1
 |-  ( ( A ^ ( M x. k ) ) = ( ( A ^ M ) ^ k ) -> ( ( A ^ ( M x. k ) ) x. ( A ^ M ) ) = ( ( ( A ^ M ) ^ k ) x. ( A ^ M ) ) )
31 nn0cn
 |-  ( k e. NN0 -> k e. CC )
32 ax-1cn
 |-  1 e. CC
33 adddi
 |-  ( ( M e. CC /\ k e. CC /\ 1 e. CC ) -> ( M x. ( k + 1 ) ) = ( ( M x. k ) + ( M x. 1 ) ) )
34 32 33 mp3an3
 |-  ( ( M e. CC /\ k e. CC ) -> ( M x. ( k + 1 ) ) = ( ( M x. k ) + ( M x. 1 ) ) )
35 mulid1
 |-  ( M e. CC -> ( M x. 1 ) = M )
36 35 adantr
 |-  ( ( M e. CC /\ k e. CC ) -> ( M x. 1 ) = M )
37 36 oveq2d
 |-  ( ( M e. CC /\ k e. CC ) -> ( ( M x. k ) + ( M x. 1 ) ) = ( ( M x. k ) + M ) )
38 34 37 eqtrd
 |-  ( ( M e. CC /\ k e. CC ) -> ( M x. ( k + 1 ) ) = ( ( M x. k ) + M ) )
39 21 31 38 syl2an
 |-  ( ( M e. NN0 /\ k e. NN0 ) -> ( M x. ( k + 1 ) ) = ( ( M x. k ) + M ) )
40 39 adantll
 |-  ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( M x. ( k + 1 ) ) = ( ( M x. k ) + M ) )
41 40 oveq2d
 |-  ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ ( M x. ( k + 1 ) ) ) = ( A ^ ( ( M x. k ) + M ) ) )
42 simpll
 |-  ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> A e. CC )
43 nn0mulcl
 |-  ( ( M e. NN0 /\ k e. NN0 ) -> ( M x. k ) e. NN0 )
44 43 adantll
 |-  ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( M x. k ) e. NN0 )
45 simplr
 |-  ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> M e. NN0 )
46 expadd
 |-  ( ( A e. CC /\ ( M x. k ) e. NN0 /\ M e. NN0 ) -> ( A ^ ( ( M x. k ) + M ) ) = ( ( A ^ ( M x. k ) ) x. ( A ^ M ) ) )
47 42 44 45 46 syl3anc
 |-  ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ ( ( M x. k ) + M ) ) = ( ( A ^ ( M x. k ) ) x. ( A ^ M ) ) )
48 41 47 eqtrd
 |-  ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ ( M x. ( k + 1 ) ) ) = ( ( A ^ ( M x. k ) ) x. ( A ^ M ) ) )
49 expp1
 |-  ( ( ( A ^ M ) e. CC /\ k e. NN0 ) -> ( ( A ^ M ) ^ ( k + 1 ) ) = ( ( ( A ^ M ) ^ k ) x. ( A ^ M ) ) )
50 26 49 sylan
 |-  ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( A ^ M ) ^ ( k + 1 ) ) = ( ( ( A ^ M ) ^ k ) x. ( A ^ M ) ) )
51 48 50 eqeq12d
 |-  ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( A ^ ( M x. ( k + 1 ) ) ) = ( ( A ^ M ) ^ ( k + 1 ) ) <-> ( ( A ^ ( M x. k ) ) x. ( A ^ M ) ) = ( ( ( A ^ M ) ^ k ) x. ( A ^ M ) ) ) )
52 30 51 syl5ibr
 |-  ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( A ^ ( M x. k ) ) = ( ( A ^ M ) ^ k ) -> ( A ^ ( M x. ( k + 1 ) ) ) = ( ( A ^ M ) ^ ( k + 1 ) ) ) )
53 52 expcom
 |-  ( k e. NN0 -> ( ( A e. CC /\ M e. NN0 ) -> ( ( A ^ ( M x. k ) ) = ( ( A ^ M ) ^ k ) -> ( A ^ ( M x. ( k + 1 ) ) ) = ( ( A ^ M ) ^ ( k + 1 ) ) ) ) )
54 53 a2d
 |-  ( k e. NN0 -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. k ) ) = ( ( A ^ M ) ^ k ) ) -> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. ( k + 1 ) ) ) = ( ( A ^ M ) ^ ( k + 1 ) ) ) ) )
55 5 10 15 20 29 54 nn0ind
 |-  ( N e. NN0 -> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) )
56 55 expdcom
 |-  ( A e. CC -> ( M e. NN0 -> ( N e. NN0 -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) ) )
57 56 3imp
 |-  ( ( A e. CC /\ M e. NN0 /\ N e. NN0 ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) )