Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( j = 0 -> ( M x. j ) = ( M x. 0 ) ) |
2 |
1
|
oveq2d |
|- ( j = 0 -> ( A ^ ( M x. j ) ) = ( A ^ ( M x. 0 ) ) ) |
3 |
|
oveq2 |
|- ( j = 0 -> ( ( A ^ M ) ^ j ) = ( ( A ^ M ) ^ 0 ) ) |
4 |
2 3
|
eqeq12d |
|- ( j = 0 -> ( ( A ^ ( M x. j ) ) = ( ( A ^ M ) ^ j ) <-> ( A ^ ( M x. 0 ) ) = ( ( A ^ M ) ^ 0 ) ) ) |
5 |
4
|
imbi2d |
|- ( j = 0 -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. j ) ) = ( ( A ^ M ) ^ j ) ) <-> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. 0 ) ) = ( ( A ^ M ) ^ 0 ) ) ) ) |
6 |
|
oveq2 |
|- ( j = k -> ( M x. j ) = ( M x. k ) ) |
7 |
6
|
oveq2d |
|- ( j = k -> ( A ^ ( M x. j ) ) = ( A ^ ( M x. k ) ) ) |
8 |
|
oveq2 |
|- ( j = k -> ( ( A ^ M ) ^ j ) = ( ( A ^ M ) ^ k ) ) |
9 |
7 8
|
eqeq12d |
|- ( j = k -> ( ( A ^ ( M x. j ) ) = ( ( A ^ M ) ^ j ) <-> ( A ^ ( M x. k ) ) = ( ( A ^ M ) ^ k ) ) ) |
10 |
9
|
imbi2d |
|- ( j = k -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. j ) ) = ( ( A ^ M ) ^ j ) ) <-> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. k ) ) = ( ( A ^ M ) ^ k ) ) ) ) |
11 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( M x. j ) = ( M x. ( k + 1 ) ) ) |
12 |
11
|
oveq2d |
|- ( j = ( k + 1 ) -> ( A ^ ( M x. j ) ) = ( A ^ ( M x. ( k + 1 ) ) ) ) |
13 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( ( A ^ M ) ^ j ) = ( ( A ^ M ) ^ ( k + 1 ) ) ) |
14 |
12 13
|
eqeq12d |
|- ( j = ( k + 1 ) -> ( ( A ^ ( M x. j ) ) = ( ( A ^ M ) ^ j ) <-> ( A ^ ( M x. ( k + 1 ) ) ) = ( ( A ^ M ) ^ ( k + 1 ) ) ) ) |
15 |
14
|
imbi2d |
|- ( j = ( k + 1 ) -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. j ) ) = ( ( A ^ M ) ^ j ) ) <-> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. ( k + 1 ) ) ) = ( ( A ^ M ) ^ ( k + 1 ) ) ) ) ) |
16 |
|
oveq2 |
|- ( j = N -> ( M x. j ) = ( M x. N ) ) |
17 |
16
|
oveq2d |
|- ( j = N -> ( A ^ ( M x. j ) ) = ( A ^ ( M x. N ) ) ) |
18 |
|
oveq2 |
|- ( j = N -> ( ( A ^ M ) ^ j ) = ( ( A ^ M ) ^ N ) ) |
19 |
17 18
|
eqeq12d |
|- ( j = N -> ( ( A ^ ( M x. j ) ) = ( ( A ^ M ) ^ j ) <-> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) ) |
20 |
19
|
imbi2d |
|- ( j = N -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. j ) ) = ( ( A ^ M ) ^ j ) ) <-> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) ) ) |
21 |
|
nn0cn |
|- ( M e. NN0 -> M e. CC ) |
22 |
21
|
mul01d |
|- ( M e. NN0 -> ( M x. 0 ) = 0 ) |
23 |
22
|
oveq2d |
|- ( M e. NN0 -> ( A ^ ( M x. 0 ) ) = ( A ^ 0 ) ) |
24 |
|
exp0 |
|- ( A e. CC -> ( A ^ 0 ) = 1 ) |
25 |
23 24
|
sylan9eqr |
|- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. 0 ) ) = 1 ) |
26 |
|
expcl |
|- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ M ) e. CC ) |
27 |
|
exp0 |
|- ( ( A ^ M ) e. CC -> ( ( A ^ M ) ^ 0 ) = 1 ) |
28 |
26 27
|
syl |
|- ( ( A e. CC /\ M e. NN0 ) -> ( ( A ^ M ) ^ 0 ) = 1 ) |
29 |
25 28
|
eqtr4d |
|- ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. 0 ) ) = ( ( A ^ M ) ^ 0 ) ) |
30 |
|
oveq1 |
|- ( ( A ^ ( M x. k ) ) = ( ( A ^ M ) ^ k ) -> ( ( A ^ ( M x. k ) ) x. ( A ^ M ) ) = ( ( ( A ^ M ) ^ k ) x. ( A ^ M ) ) ) |
31 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
32 |
|
ax-1cn |
|- 1 e. CC |
33 |
|
adddi |
|- ( ( M e. CC /\ k e. CC /\ 1 e. CC ) -> ( M x. ( k + 1 ) ) = ( ( M x. k ) + ( M x. 1 ) ) ) |
34 |
32 33
|
mp3an3 |
|- ( ( M e. CC /\ k e. CC ) -> ( M x. ( k + 1 ) ) = ( ( M x. k ) + ( M x. 1 ) ) ) |
35 |
|
mulid1 |
|- ( M e. CC -> ( M x. 1 ) = M ) |
36 |
35
|
adantr |
|- ( ( M e. CC /\ k e. CC ) -> ( M x. 1 ) = M ) |
37 |
36
|
oveq2d |
|- ( ( M e. CC /\ k e. CC ) -> ( ( M x. k ) + ( M x. 1 ) ) = ( ( M x. k ) + M ) ) |
38 |
34 37
|
eqtrd |
|- ( ( M e. CC /\ k e. CC ) -> ( M x. ( k + 1 ) ) = ( ( M x. k ) + M ) ) |
39 |
21 31 38
|
syl2an |
|- ( ( M e. NN0 /\ k e. NN0 ) -> ( M x. ( k + 1 ) ) = ( ( M x. k ) + M ) ) |
40 |
39
|
adantll |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( M x. ( k + 1 ) ) = ( ( M x. k ) + M ) ) |
41 |
40
|
oveq2d |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ ( M x. ( k + 1 ) ) ) = ( A ^ ( ( M x. k ) + M ) ) ) |
42 |
|
simpll |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> A e. CC ) |
43 |
|
nn0mulcl |
|- ( ( M e. NN0 /\ k e. NN0 ) -> ( M x. k ) e. NN0 ) |
44 |
43
|
adantll |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( M x. k ) e. NN0 ) |
45 |
|
simplr |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> M e. NN0 ) |
46 |
|
expadd |
|- ( ( A e. CC /\ ( M x. k ) e. NN0 /\ M e. NN0 ) -> ( A ^ ( ( M x. k ) + M ) ) = ( ( A ^ ( M x. k ) ) x. ( A ^ M ) ) ) |
47 |
42 44 45 46
|
syl3anc |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ ( ( M x. k ) + M ) ) = ( ( A ^ ( M x. k ) ) x. ( A ^ M ) ) ) |
48 |
41 47
|
eqtrd |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( A ^ ( M x. ( k + 1 ) ) ) = ( ( A ^ ( M x. k ) ) x. ( A ^ M ) ) ) |
49 |
|
expp1 |
|- ( ( ( A ^ M ) e. CC /\ k e. NN0 ) -> ( ( A ^ M ) ^ ( k + 1 ) ) = ( ( ( A ^ M ) ^ k ) x. ( A ^ M ) ) ) |
50 |
26 49
|
sylan |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( A ^ M ) ^ ( k + 1 ) ) = ( ( ( A ^ M ) ^ k ) x. ( A ^ M ) ) ) |
51 |
48 50
|
eqeq12d |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( A ^ ( M x. ( k + 1 ) ) ) = ( ( A ^ M ) ^ ( k + 1 ) ) <-> ( ( A ^ ( M x. k ) ) x. ( A ^ M ) ) = ( ( ( A ^ M ) ^ k ) x. ( A ^ M ) ) ) ) |
52 |
30 51
|
syl5ibr |
|- ( ( ( A e. CC /\ M e. NN0 ) /\ k e. NN0 ) -> ( ( A ^ ( M x. k ) ) = ( ( A ^ M ) ^ k ) -> ( A ^ ( M x. ( k + 1 ) ) ) = ( ( A ^ M ) ^ ( k + 1 ) ) ) ) |
53 |
52
|
expcom |
|- ( k e. NN0 -> ( ( A e. CC /\ M e. NN0 ) -> ( ( A ^ ( M x. k ) ) = ( ( A ^ M ) ^ k ) -> ( A ^ ( M x. ( k + 1 ) ) ) = ( ( A ^ M ) ^ ( k + 1 ) ) ) ) ) |
54 |
53
|
a2d |
|- ( k e. NN0 -> ( ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. k ) ) = ( ( A ^ M ) ^ k ) ) -> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. ( k + 1 ) ) ) = ( ( A ^ M ) ^ ( k + 1 ) ) ) ) ) |
55 |
5 10 15 20 29 54
|
nn0ind |
|- ( N e. NN0 -> ( ( A e. CC /\ M e. NN0 ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) ) |
56 |
55
|
expdcom |
|- ( A e. CC -> ( M e. NN0 -> ( N e. NN0 -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) ) ) |
57 |
56
|
3imp |
|- ( ( A e. CC /\ M e. NN0 /\ N e. NN0 ) -> ( A ^ ( M x. N ) ) = ( ( A ^ M ) ^ N ) ) |