Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|- 2 e. RR |
2 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> A e. RR ) |
3 |
|
remulcl |
|- ( ( 2 e. RR /\ A e. RR ) -> ( 2 x. A ) e. RR ) |
4 |
1 2 3
|
sylancr |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( 2 x. A ) e. RR ) |
5 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> 1 < B ) |
6 |
|
1re |
|- 1 e. RR |
7 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> B e. RR ) |
8 |
|
difrp |
|- ( ( 1 e. RR /\ B e. RR ) -> ( 1 < B <-> ( B - 1 ) e. RR+ ) ) |
9 |
6 7 8
|
sylancr |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( 1 < B <-> ( B - 1 ) e. RR+ ) ) |
10 |
5 9
|
mpbid |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( B - 1 ) e. RR+ ) |
11 |
4 10
|
rerpdivcld |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( ( 2 x. A ) / ( B - 1 ) ) e. RR ) |
12 |
|
expnbnd |
|- ( ( ( ( 2 x. A ) / ( B - 1 ) ) e. RR /\ B e. RR /\ 1 < B ) -> E. n e. NN ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) |
13 |
11 7 5 12
|
syl3anc |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> E. n e. NN ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) |
14 |
|
2nn0 |
|- 2 e. NN0 |
15 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
16 |
15
|
ad2antrl |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) -> n e. NN0 ) |
17 |
|
nn0mulcl |
|- ( ( 2 e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) |
18 |
14 16 17
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) -> ( 2 x. n ) e. NN0 ) |
19 |
2
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> A e. RR ) |
20 |
|
2nn |
|- 2 e. NN |
21 |
|
simprl |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) -> n e. NN ) |
22 |
|
nnmulcl |
|- ( ( 2 e. NN /\ n e. NN ) -> ( 2 x. n ) e. NN ) |
23 |
20 21 22
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) -> ( 2 x. n ) e. NN ) |
24 |
|
eluznn |
|- ( ( ( 2 x. n ) e. NN /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k e. NN ) |
25 |
23 24
|
sylan |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k e. NN ) |
26 |
25
|
nnred |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k e. RR ) |
27 |
19 26
|
remulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( A x. k ) e. RR ) |
28 |
|
0re |
|- 0 e. RR |
29 |
|
ifcl |
|- ( ( A e. RR /\ 0 e. RR ) -> if ( 0 <_ A , A , 0 ) e. RR ) |
30 |
19 28 29
|
sylancl |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> if ( 0 <_ A , A , 0 ) e. RR ) |
31 |
|
remulcl |
|- ( ( 2 e. RR /\ if ( 0 <_ A , A , 0 ) e. RR ) -> ( 2 x. if ( 0 <_ A , A , 0 ) ) e. RR ) |
32 |
1 30 31
|
sylancr |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. if ( 0 <_ A , A , 0 ) ) e. RR ) |
33 |
|
simplrl |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> n e. NN ) |
34 |
33
|
nnred |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> n e. RR ) |
35 |
26 34
|
resubcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( k - n ) e. RR ) |
36 |
32 35
|
remulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) x. ( k - n ) ) e. RR ) |
37 |
7
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> B e. RR ) |
38 |
25
|
nnnn0d |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k e. NN0 ) |
39 |
|
reexpcl |
|- ( ( B e. RR /\ k e. NN0 ) -> ( B ^ k ) e. RR ) |
40 |
37 38 39
|
syl2anc |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( B ^ k ) e. RR ) |
41 |
|
remulcl |
|- ( ( 2 e. RR /\ ( k - n ) e. RR ) -> ( 2 x. ( k - n ) ) e. RR ) |
42 |
1 35 41
|
sylancr |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. ( k - n ) ) e. RR ) |
43 |
38
|
nn0ge0d |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 <_ k ) |
44 |
|
max1 |
|- ( ( 0 e. RR /\ A e. RR ) -> 0 <_ if ( 0 <_ A , A , 0 ) ) |
45 |
28 19 44
|
sylancr |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 <_ if ( 0 <_ A , A , 0 ) ) |
46 |
|
remulcl |
|- ( ( 2 e. RR /\ n e. RR ) -> ( 2 x. n ) e. RR ) |
47 |
1 34 46
|
sylancr |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. n ) e. RR ) |
48 |
|
eluzle |
|- ( k e. ( ZZ>= ` ( 2 x. n ) ) -> ( 2 x. n ) <_ k ) |
49 |
48
|
adantl |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. n ) <_ k ) |
50 |
47 26 26 49
|
leadd2dd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( k + ( 2 x. n ) ) <_ ( k + k ) ) |
51 |
26
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k e. CC ) |
52 |
51
|
2timesd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. k ) = ( k + k ) ) |
53 |
50 52
|
breqtrrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( k + ( 2 x. n ) ) <_ ( 2 x. k ) ) |
54 |
|
remulcl |
|- ( ( 2 e. RR /\ k e. RR ) -> ( 2 x. k ) e. RR ) |
55 |
1 26 54
|
sylancr |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. k ) e. RR ) |
56 |
|
leaddsub |
|- ( ( k e. RR /\ ( 2 x. n ) e. RR /\ ( 2 x. k ) e. RR ) -> ( ( k + ( 2 x. n ) ) <_ ( 2 x. k ) <-> k <_ ( ( 2 x. k ) - ( 2 x. n ) ) ) ) |
57 |
26 47 55 56
|
syl3anc |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( k + ( 2 x. n ) ) <_ ( 2 x. k ) <-> k <_ ( ( 2 x. k ) - ( 2 x. n ) ) ) ) |
58 |
53 57
|
mpbid |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k <_ ( ( 2 x. k ) - ( 2 x. n ) ) ) |
59 |
|
2cnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 2 e. CC ) |
60 |
34
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> n e. CC ) |
61 |
59 51 60
|
subdid |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. ( k - n ) ) = ( ( 2 x. k ) - ( 2 x. n ) ) ) |
62 |
58 61
|
breqtrrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k <_ ( 2 x. ( k - n ) ) ) |
63 |
|
max2 |
|- ( ( 0 e. RR /\ A e. RR ) -> A <_ if ( 0 <_ A , A , 0 ) ) |
64 |
28 19 63
|
sylancr |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> A <_ if ( 0 <_ A , A , 0 ) ) |
65 |
26 42 19 30 43 45 62 64
|
lemul12bd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( k x. A ) <_ ( ( 2 x. ( k - n ) ) x. if ( 0 <_ A , A , 0 ) ) ) |
66 |
19
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> A e. CC ) |
67 |
66 51
|
mulcomd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( A x. k ) = ( k x. A ) ) |
68 |
30
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> if ( 0 <_ A , A , 0 ) e. CC ) |
69 |
35
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( k - n ) e. CC ) |
70 |
59 68 69
|
mul32d |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) x. ( k - n ) ) = ( ( 2 x. ( k - n ) ) x. if ( 0 <_ A , A , 0 ) ) ) |
71 |
65 67 70
|
3brtr4d |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( A x. k ) <_ ( ( 2 x. if ( 0 <_ A , A , 0 ) ) x. ( k - n ) ) ) |
72 |
10
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( B - 1 ) e. RR+ ) |
73 |
72
|
rpred |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( B - 1 ) e. RR ) |
74 |
73 35
|
remulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( B - 1 ) x. ( k - n ) ) e. RR ) |
75 |
33
|
nnnn0d |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> n e. NN0 ) |
76 |
|
reexpcl |
|- ( ( B e. RR /\ n e. NN0 ) -> ( B ^ n ) e. RR ) |
77 |
37 75 76
|
syl2anc |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( B ^ n ) e. RR ) |
78 |
74 77
|
remulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( ( B - 1 ) x. ( k - n ) ) x. ( B ^ n ) ) e. RR ) |
79 |
|
simplrr |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) |
80 |
1 19 3
|
sylancr |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. A ) e. RR ) |
81 |
80 77 72
|
ltdivmuld |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) <-> ( 2 x. A ) < ( ( B - 1 ) x. ( B ^ n ) ) ) ) |
82 |
79 81
|
mpbid |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. A ) < ( ( B - 1 ) x. ( B ^ n ) ) ) |
83 |
5
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 1 < B ) |
84 |
|
posdif |
|- ( ( 1 e. RR /\ B e. RR ) -> ( 1 < B <-> 0 < ( B - 1 ) ) ) |
85 |
6 37 84
|
sylancr |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 1 < B <-> 0 < ( B - 1 ) ) ) |
86 |
83 85
|
mpbid |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 < ( B - 1 ) ) |
87 |
33
|
nnzd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> n e. ZZ ) |
88 |
28
|
a1i |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 e. RR ) |
89 |
6
|
a1i |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 1 e. RR ) |
90 |
|
0lt1 |
|- 0 < 1 |
91 |
90
|
a1i |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 < 1 ) |
92 |
88 89 37 91 83
|
lttrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 < B ) |
93 |
|
expgt0 |
|- ( ( B e. RR /\ n e. ZZ /\ 0 < B ) -> 0 < ( B ^ n ) ) |
94 |
37 87 92 93
|
syl3anc |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 < ( B ^ n ) ) |
95 |
73 77 86 94
|
mulgt0d |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 < ( ( B - 1 ) x. ( B ^ n ) ) ) |
96 |
|
oveq2 |
|- ( A = if ( 0 <_ A , A , 0 ) -> ( 2 x. A ) = ( 2 x. if ( 0 <_ A , A , 0 ) ) ) |
97 |
96
|
breq1d |
|- ( A = if ( 0 <_ A , A , 0 ) -> ( ( 2 x. A ) < ( ( B - 1 ) x. ( B ^ n ) ) <-> ( 2 x. if ( 0 <_ A , A , 0 ) ) < ( ( B - 1 ) x. ( B ^ n ) ) ) ) |
98 |
|
2t0e0 |
|- ( 2 x. 0 ) = 0 |
99 |
|
oveq2 |
|- ( 0 = if ( 0 <_ A , A , 0 ) -> ( 2 x. 0 ) = ( 2 x. if ( 0 <_ A , A , 0 ) ) ) |
100 |
98 99
|
eqtr3id |
|- ( 0 = if ( 0 <_ A , A , 0 ) -> 0 = ( 2 x. if ( 0 <_ A , A , 0 ) ) ) |
101 |
100
|
breq1d |
|- ( 0 = if ( 0 <_ A , A , 0 ) -> ( 0 < ( ( B - 1 ) x. ( B ^ n ) ) <-> ( 2 x. if ( 0 <_ A , A , 0 ) ) < ( ( B - 1 ) x. ( B ^ n ) ) ) ) |
102 |
97 101
|
ifboth |
|- ( ( ( 2 x. A ) < ( ( B - 1 ) x. ( B ^ n ) ) /\ 0 < ( ( B - 1 ) x. ( B ^ n ) ) ) -> ( 2 x. if ( 0 <_ A , A , 0 ) ) < ( ( B - 1 ) x. ( B ^ n ) ) ) |
103 |
82 95 102
|
syl2anc |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. if ( 0 <_ A , A , 0 ) ) < ( ( B - 1 ) x. ( B ^ n ) ) ) |
104 |
73 77
|
remulcld |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( B - 1 ) x. ( B ^ n ) ) e. RR ) |
105 |
|
simpr |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k e. ( ZZ>= ` ( 2 x. n ) ) ) |
106 |
60
|
2timesd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( 2 x. n ) = ( n + n ) ) |
107 |
106
|
fveq2d |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ZZ>= ` ( 2 x. n ) ) = ( ZZ>= ` ( n + n ) ) ) |
108 |
105 107
|
eleqtrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k e. ( ZZ>= ` ( n + n ) ) ) |
109 |
|
eluzsub |
|- ( ( n e. ZZ /\ n e. ZZ /\ k e. ( ZZ>= ` ( n + n ) ) ) -> ( k - n ) e. ( ZZ>= ` n ) ) |
110 |
87 87 108 109
|
syl3anc |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( k - n ) e. ( ZZ>= ` n ) ) |
111 |
|
eluznn |
|- ( ( n e. NN /\ ( k - n ) e. ( ZZ>= ` n ) ) -> ( k - n ) e. NN ) |
112 |
33 110 111
|
syl2anc |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( k - n ) e. NN ) |
113 |
112
|
nngt0d |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 < ( k - n ) ) |
114 |
|
ltmul1 |
|- ( ( ( 2 x. if ( 0 <_ A , A , 0 ) ) e. RR /\ ( ( B - 1 ) x. ( B ^ n ) ) e. RR /\ ( ( k - n ) e. RR /\ 0 < ( k - n ) ) ) -> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) < ( ( B - 1 ) x. ( B ^ n ) ) <-> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) x. ( k - n ) ) < ( ( ( B - 1 ) x. ( B ^ n ) ) x. ( k - n ) ) ) ) |
115 |
32 104 35 113 114
|
syl112anc |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) < ( ( B - 1 ) x. ( B ^ n ) ) <-> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) x. ( k - n ) ) < ( ( ( B - 1 ) x. ( B ^ n ) ) x. ( k - n ) ) ) ) |
116 |
103 115
|
mpbid |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) x. ( k - n ) ) < ( ( ( B - 1 ) x. ( B ^ n ) ) x. ( k - n ) ) ) |
117 |
73
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( B - 1 ) e. CC ) |
118 |
77
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( B ^ n ) e. CC ) |
119 |
117 118 69
|
mul32d |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( ( B - 1 ) x. ( B ^ n ) ) x. ( k - n ) ) = ( ( ( B - 1 ) x. ( k - n ) ) x. ( B ^ n ) ) ) |
120 |
116 119
|
breqtrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) x. ( k - n ) ) < ( ( ( B - 1 ) x. ( k - n ) ) x. ( B ^ n ) ) ) |
121 |
|
peano2re |
|- ( ( ( B - 1 ) x. ( k - n ) ) e. RR -> ( ( ( B - 1 ) x. ( k - n ) ) + 1 ) e. RR ) |
122 |
74 121
|
syl |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( ( B - 1 ) x. ( k - n ) ) + 1 ) e. RR ) |
123 |
112
|
nnnn0d |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( k - n ) e. NN0 ) |
124 |
|
reexpcl |
|- ( ( B e. RR /\ ( k - n ) e. NN0 ) -> ( B ^ ( k - n ) ) e. RR ) |
125 |
37 123 124
|
syl2anc |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( B ^ ( k - n ) ) e. RR ) |
126 |
74
|
ltp1d |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( B - 1 ) x. ( k - n ) ) < ( ( ( B - 1 ) x. ( k - n ) ) + 1 ) ) |
127 |
88 37 92
|
ltled |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> 0 <_ B ) |
128 |
|
bernneq2 |
|- ( ( B e. RR /\ ( k - n ) e. NN0 /\ 0 <_ B ) -> ( ( ( B - 1 ) x. ( k - n ) ) + 1 ) <_ ( B ^ ( k - n ) ) ) |
129 |
37 123 127 128
|
syl3anc |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( ( B - 1 ) x. ( k - n ) ) + 1 ) <_ ( B ^ ( k - n ) ) ) |
130 |
74 122 125 126 129
|
ltletrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( B - 1 ) x. ( k - n ) ) < ( B ^ ( k - n ) ) ) |
131 |
37
|
recnd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> B e. CC ) |
132 |
92
|
gt0ne0d |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> B =/= 0 ) |
133 |
|
eluzelz |
|- ( k e. ( ZZ>= ` ( 2 x. n ) ) -> k e. ZZ ) |
134 |
133
|
adantl |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> k e. ZZ ) |
135 |
|
expsub |
|- ( ( ( B e. CC /\ B =/= 0 ) /\ ( k e. ZZ /\ n e. ZZ ) ) -> ( B ^ ( k - n ) ) = ( ( B ^ k ) / ( B ^ n ) ) ) |
136 |
131 132 134 87 135
|
syl22anc |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( B ^ ( k - n ) ) = ( ( B ^ k ) / ( B ^ n ) ) ) |
137 |
130 136
|
breqtrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( B - 1 ) x. ( k - n ) ) < ( ( B ^ k ) / ( B ^ n ) ) ) |
138 |
|
ltmuldiv |
|- ( ( ( ( B - 1 ) x. ( k - n ) ) e. RR /\ ( B ^ k ) e. RR /\ ( ( B ^ n ) e. RR /\ 0 < ( B ^ n ) ) ) -> ( ( ( ( B - 1 ) x. ( k - n ) ) x. ( B ^ n ) ) < ( B ^ k ) <-> ( ( B - 1 ) x. ( k - n ) ) < ( ( B ^ k ) / ( B ^ n ) ) ) ) |
139 |
74 40 77 94 138
|
syl112anc |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( ( ( B - 1 ) x. ( k - n ) ) x. ( B ^ n ) ) < ( B ^ k ) <-> ( ( B - 1 ) x. ( k - n ) ) < ( ( B ^ k ) / ( B ^ n ) ) ) ) |
140 |
137 139
|
mpbird |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( ( B - 1 ) x. ( k - n ) ) x. ( B ^ n ) ) < ( B ^ k ) ) |
141 |
36 78 40 120 140
|
lttrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( ( 2 x. if ( 0 <_ A , A , 0 ) ) x. ( k - n ) ) < ( B ^ k ) ) |
142 |
27 36 40 71 141
|
lelttrd |
|- ( ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) /\ k e. ( ZZ>= ` ( 2 x. n ) ) ) -> ( A x. k ) < ( B ^ k ) ) |
143 |
142
|
ralrimiva |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) -> A. k e. ( ZZ>= ` ( 2 x. n ) ) ( A x. k ) < ( B ^ k ) ) |
144 |
|
fveq2 |
|- ( j = ( 2 x. n ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( 2 x. n ) ) ) |
145 |
144
|
raleqdv |
|- ( j = ( 2 x. n ) -> ( A. k e. ( ZZ>= ` j ) ( A x. k ) < ( B ^ k ) <-> A. k e. ( ZZ>= ` ( 2 x. n ) ) ( A x. k ) < ( B ^ k ) ) ) |
146 |
145
|
rspcev |
|- ( ( ( 2 x. n ) e. NN0 /\ A. k e. ( ZZ>= ` ( 2 x. n ) ) ( A x. k ) < ( B ^ k ) ) -> E. j e. NN0 A. k e. ( ZZ>= ` j ) ( A x. k ) < ( B ^ k ) ) |
147 |
18 143 146
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ ( n e. NN /\ ( ( 2 x. A ) / ( B - 1 ) ) < ( B ^ n ) ) ) -> E. j e. NN0 A. k e. ( ZZ>= ` j ) ( A x. k ) < ( B ^ k ) ) |
148 |
13 147
|
rexlimddv |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> E. j e. NN0 A. k e. ( ZZ>= ` j ) ( A x. k ) < ( B ^ k ) ) |