| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3cn |  |-  3 e. CC | 
						
							| 2 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 3 |  | expmul |  |-  ( ( 3 e. CC /\ 3 e. NN0 /\ 3 e. NN0 ) -> ( 3 ^ ( 3 x. 3 ) ) = ( ( 3 ^ 3 ) ^ 3 ) ) | 
						
							| 4 | 1 2 2 3 | mp3an |  |-  ( 3 ^ ( 3 x. 3 ) ) = ( ( 3 ^ 3 ) ^ 3 ) | 
						
							| 5 |  | 3re |  |-  3 e. RR | 
						
							| 6 | 2 2 | nn0mulcli |  |-  ( 3 x. 3 ) e. NN0 | 
						
							| 7 | 6 | nn0zi |  |-  ( 3 x. 3 ) e. ZZ | 
						
							| 8 | 2 2 | nn0expcli |  |-  ( 3 ^ 3 ) e. NN0 | 
						
							| 9 | 8 | nn0zi |  |-  ( 3 ^ 3 ) e. ZZ | 
						
							| 10 |  | 1lt3 |  |-  1 < 3 | 
						
							| 11 | 1 | sqvali |  |-  ( 3 ^ 2 ) = ( 3 x. 3 ) | 
						
							| 12 |  | 2z |  |-  2 e. ZZ | 
						
							| 13 |  | 3z |  |-  3 e. ZZ | 
						
							| 14 |  | 2lt3 |  |-  2 < 3 | 
						
							| 15 |  | ltexp2a |  |-  ( ( ( 3 e. RR /\ 2 e. ZZ /\ 3 e. ZZ ) /\ ( 1 < 3 /\ 2 < 3 ) ) -> ( 3 ^ 2 ) < ( 3 ^ 3 ) ) | 
						
							| 16 | 10 14 15 | mpanr12 |  |-  ( ( 3 e. RR /\ 2 e. ZZ /\ 3 e. ZZ ) -> ( 3 ^ 2 ) < ( 3 ^ 3 ) ) | 
						
							| 17 | 5 12 13 16 | mp3an |  |-  ( 3 ^ 2 ) < ( 3 ^ 3 ) | 
						
							| 18 | 11 17 | eqbrtrri |  |-  ( 3 x. 3 ) < ( 3 ^ 3 ) | 
						
							| 19 |  | ltexp2a |  |-  ( ( ( 3 e. RR /\ ( 3 x. 3 ) e. ZZ /\ ( 3 ^ 3 ) e. ZZ ) /\ ( 1 < 3 /\ ( 3 x. 3 ) < ( 3 ^ 3 ) ) ) -> ( 3 ^ ( 3 x. 3 ) ) < ( 3 ^ ( 3 ^ 3 ) ) ) | 
						
							| 20 | 10 18 19 | mpanr12 |  |-  ( ( 3 e. RR /\ ( 3 x. 3 ) e. ZZ /\ ( 3 ^ 3 ) e. ZZ ) -> ( 3 ^ ( 3 x. 3 ) ) < ( 3 ^ ( 3 ^ 3 ) ) ) | 
						
							| 21 | 5 7 9 20 | mp3an |  |-  ( 3 ^ ( 3 x. 3 ) ) < ( 3 ^ ( 3 ^ 3 ) ) | 
						
							| 22 | 4 21 | eqbrtrri |  |-  ( ( 3 ^ 3 ) ^ 3 ) < ( 3 ^ ( 3 ^ 3 ) ) |