| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1nn |
|- 1 e. NN |
| 2 |
|
1re |
|- 1 e. RR |
| 3 |
|
lttr |
|- ( ( A e. RR /\ 1 e. RR /\ B e. RR ) -> ( ( A < 1 /\ 1 < B ) -> A < B ) ) |
| 4 |
2 3
|
mp3an2 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A < 1 /\ 1 < B ) -> A < B ) ) |
| 5 |
4
|
exp4b |
|- ( A e. RR -> ( B e. RR -> ( A < 1 -> ( 1 < B -> A < B ) ) ) ) |
| 6 |
5
|
com34 |
|- ( A e. RR -> ( B e. RR -> ( 1 < B -> ( A < 1 -> A < B ) ) ) ) |
| 7 |
6
|
3imp1 |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ A < 1 ) -> A < B ) |
| 8 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 9 |
|
exp1 |
|- ( B e. CC -> ( B ^ 1 ) = B ) |
| 10 |
8 9
|
syl |
|- ( B e. RR -> ( B ^ 1 ) = B ) |
| 11 |
10
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( B ^ 1 ) = B ) |
| 12 |
11
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ A < 1 ) -> ( B ^ 1 ) = B ) |
| 13 |
7 12
|
breqtrrd |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ A < 1 ) -> A < ( B ^ 1 ) ) |
| 14 |
|
oveq2 |
|- ( k = 1 -> ( B ^ k ) = ( B ^ 1 ) ) |
| 15 |
14
|
breq2d |
|- ( k = 1 -> ( A < ( B ^ k ) <-> A < ( B ^ 1 ) ) ) |
| 16 |
15
|
rspcev |
|- ( ( 1 e. NN /\ A < ( B ^ 1 ) ) -> E. k e. NN A < ( B ^ k ) ) |
| 17 |
1 13 16
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ A < 1 ) -> E. k e. NN A < ( B ^ k ) ) |
| 18 |
|
peano2rem |
|- ( A e. RR -> ( A - 1 ) e. RR ) |
| 19 |
18
|
adantr |
|- ( ( A e. RR /\ ( B e. RR /\ 1 < B ) ) -> ( A - 1 ) e. RR ) |
| 20 |
|
peano2rem |
|- ( B e. RR -> ( B - 1 ) e. RR ) |
| 21 |
20
|
adantr |
|- ( ( B e. RR /\ 1 < B ) -> ( B - 1 ) e. RR ) |
| 22 |
21
|
adantl |
|- ( ( A e. RR /\ ( B e. RR /\ 1 < B ) ) -> ( B - 1 ) e. RR ) |
| 23 |
|
posdif |
|- ( ( 1 e. RR /\ B e. RR ) -> ( 1 < B <-> 0 < ( B - 1 ) ) ) |
| 24 |
2 23
|
mpan |
|- ( B e. RR -> ( 1 < B <-> 0 < ( B - 1 ) ) ) |
| 25 |
24
|
biimpa |
|- ( ( B e. RR /\ 1 < B ) -> 0 < ( B - 1 ) ) |
| 26 |
25
|
gt0ne0d |
|- ( ( B e. RR /\ 1 < B ) -> ( B - 1 ) =/= 0 ) |
| 27 |
26
|
adantl |
|- ( ( A e. RR /\ ( B e. RR /\ 1 < B ) ) -> ( B - 1 ) =/= 0 ) |
| 28 |
19 22 27
|
redivcld |
|- ( ( A e. RR /\ ( B e. RR /\ 1 < B ) ) -> ( ( A - 1 ) / ( B - 1 ) ) e. RR ) |
| 29 |
28
|
adantll |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( A - 1 ) / ( B - 1 ) ) e. RR ) |
| 30 |
18
|
adantl |
|- ( ( 1 <_ A /\ A e. RR ) -> ( A - 1 ) e. RR ) |
| 31 |
|
subge0 |
|- ( ( A e. RR /\ 1 e. RR ) -> ( 0 <_ ( A - 1 ) <-> 1 <_ A ) ) |
| 32 |
2 31
|
mpan2 |
|- ( A e. RR -> ( 0 <_ ( A - 1 ) <-> 1 <_ A ) ) |
| 33 |
32
|
biimparc |
|- ( ( 1 <_ A /\ A e. RR ) -> 0 <_ ( A - 1 ) ) |
| 34 |
30 33
|
jca |
|- ( ( 1 <_ A /\ A e. RR ) -> ( ( A - 1 ) e. RR /\ 0 <_ ( A - 1 ) ) ) |
| 35 |
21 25
|
jca |
|- ( ( B e. RR /\ 1 < B ) -> ( ( B - 1 ) e. RR /\ 0 < ( B - 1 ) ) ) |
| 36 |
|
divge0 |
|- ( ( ( ( A - 1 ) e. RR /\ 0 <_ ( A - 1 ) ) /\ ( ( B - 1 ) e. RR /\ 0 < ( B - 1 ) ) ) -> 0 <_ ( ( A - 1 ) / ( B - 1 ) ) ) |
| 37 |
34 35 36
|
syl2an |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> 0 <_ ( ( A - 1 ) / ( B - 1 ) ) ) |
| 38 |
|
flge0nn0 |
|- ( ( ( ( A - 1 ) / ( B - 1 ) ) e. RR /\ 0 <_ ( ( A - 1 ) / ( B - 1 ) ) ) -> ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) e. NN0 ) |
| 39 |
29 37 38
|
syl2anc |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) e. NN0 ) |
| 40 |
|
nn0p1nn |
|- ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) e. NN0 -> ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN ) |
| 41 |
39 40
|
syl |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN ) |
| 42 |
|
simplr |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> A e. RR ) |
| 43 |
21
|
adantl |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( B - 1 ) e. RR ) |
| 44 |
|
peano2nn0 |
|- ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) e. NN0 -> ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN0 ) |
| 45 |
39 44
|
syl |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN0 ) |
| 46 |
45
|
nn0red |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. RR ) |
| 47 |
43 46
|
remulcld |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR ) |
| 48 |
|
peano2re |
|- ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR -> ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) e. RR ) |
| 49 |
47 48
|
syl |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) e. RR ) |
| 50 |
|
simprl |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> B e. RR ) |
| 51 |
|
reexpcl |
|- ( ( B e. RR /\ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN0 ) -> ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR ) |
| 52 |
50 45 51
|
syl2anc |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR ) |
| 53 |
|
flltp1 |
|- ( ( ( A - 1 ) / ( B - 1 ) ) e. RR -> ( ( A - 1 ) / ( B - 1 ) ) < ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) |
| 54 |
29 53
|
syl |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( A - 1 ) / ( B - 1 ) ) < ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) |
| 55 |
30
|
adantr |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( A - 1 ) e. RR ) |
| 56 |
25
|
adantl |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> 0 < ( B - 1 ) ) |
| 57 |
|
ltdivmul |
|- ( ( ( A - 1 ) e. RR /\ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. RR /\ ( ( B - 1 ) e. RR /\ 0 < ( B - 1 ) ) ) -> ( ( ( A - 1 ) / ( B - 1 ) ) < ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) <-> ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) ) |
| 58 |
55 46 43 56 57
|
syl112anc |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( ( A - 1 ) / ( B - 1 ) ) < ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) <-> ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) ) |
| 59 |
54 58
|
mpbid |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) |
| 60 |
|
ltsubadd |
|- ( ( A e. RR /\ 1 e. RR /\ ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR ) -> ( ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) <-> A < ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) ) ) |
| 61 |
2 60
|
mp3an2 |
|- ( ( A e. RR /\ ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR ) -> ( ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) <-> A < ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) ) ) |
| 62 |
42 47 61
|
syl2anc |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) <-> A < ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) ) ) |
| 63 |
59 62
|
mpbid |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> A < ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) ) |
| 64 |
|
0lt1 |
|- 0 < 1 |
| 65 |
|
0re |
|- 0 e. RR |
| 66 |
|
lttr |
|- ( ( 0 e. RR /\ 1 e. RR /\ B e. RR ) -> ( ( 0 < 1 /\ 1 < B ) -> 0 < B ) ) |
| 67 |
65 2 66
|
mp3an12 |
|- ( B e. RR -> ( ( 0 < 1 /\ 1 < B ) -> 0 < B ) ) |
| 68 |
64 67
|
mpani |
|- ( B e. RR -> ( 1 < B -> 0 < B ) ) |
| 69 |
|
ltle |
|- ( ( 0 e. RR /\ B e. RR ) -> ( 0 < B -> 0 <_ B ) ) |
| 70 |
65 69
|
mpan |
|- ( B e. RR -> ( 0 < B -> 0 <_ B ) ) |
| 71 |
68 70
|
syld |
|- ( B e. RR -> ( 1 < B -> 0 <_ B ) ) |
| 72 |
71
|
imp |
|- ( ( B e. RR /\ 1 < B ) -> 0 <_ B ) |
| 73 |
72
|
adantl |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> 0 <_ B ) |
| 74 |
|
bernneq2 |
|- ( ( B e. RR /\ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN0 /\ 0 <_ B ) -> ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) <_ ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) |
| 75 |
50 45 73 74
|
syl3anc |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) <_ ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) |
| 76 |
42 49 52 63 75
|
ltletrd |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> A < ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) |
| 77 |
|
oveq2 |
|- ( k = ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) -> ( B ^ k ) = ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) |
| 78 |
77
|
breq2d |
|- ( k = ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) -> ( A < ( B ^ k ) <-> A < ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) ) |
| 79 |
78
|
rspcev |
|- ( ( ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN /\ A < ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) -> E. k e. NN A < ( B ^ k ) ) |
| 80 |
41 76 79
|
syl2anc |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> E. k e. NN A < ( B ^ k ) ) |
| 81 |
80
|
exp43 |
|- ( 1 <_ A -> ( A e. RR -> ( B e. RR -> ( 1 < B -> E. k e. NN A < ( B ^ k ) ) ) ) ) |
| 82 |
81
|
com4l |
|- ( A e. RR -> ( B e. RR -> ( 1 < B -> ( 1 <_ A -> E. k e. NN A < ( B ^ k ) ) ) ) ) |
| 83 |
82
|
3imp1 |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ 1 <_ A ) -> E. k e. NN A < ( B ^ k ) ) |
| 84 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> A e. RR ) |
| 85 |
|
1red |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> 1 e. RR ) |
| 86 |
17 83 84 85
|
ltlecasei |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> E. k e. NN A < ( B ^ k ) ) |