Step |
Hyp |
Ref |
Expression |
1 |
|
1nn |
|- 1 e. NN |
2 |
|
1re |
|- 1 e. RR |
3 |
|
lttr |
|- ( ( A e. RR /\ 1 e. RR /\ B e. RR ) -> ( ( A < 1 /\ 1 < B ) -> A < B ) ) |
4 |
2 3
|
mp3an2 |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A < 1 /\ 1 < B ) -> A < B ) ) |
5 |
4
|
exp4b |
|- ( A e. RR -> ( B e. RR -> ( A < 1 -> ( 1 < B -> A < B ) ) ) ) |
6 |
5
|
com34 |
|- ( A e. RR -> ( B e. RR -> ( 1 < B -> ( A < 1 -> A < B ) ) ) ) |
7 |
6
|
3imp1 |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ A < 1 ) -> A < B ) |
8 |
|
recn |
|- ( B e. RR -> B e. CC ) |
9 |
|
exp1 |
|- ( B e. CC -> ( B ^ 1 ) = B ) |
10 |
8 9
|
syl |
|- ( B e. RR -> ( B ^ 1 ) = B ) |
11 |
10
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> ( B ^ 1 ) = B ) |
12 |
11
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ A < 1 ) -> ( B ^ 1 ) = B ) |
13 |
7 12
|
breqtrrd |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ A < 1 ) -> A < ( B ^ 1 ) ) |
14 |
|
oveq2 |
|- ( k = 1 -> ( B ^ k ) = ( B ^ 1 ) ) |
15 |
14
|
breq2d |
|- ( k = 1 -> ( A < ( B ^ k ) <-> A < ( B ^ 1 ) ) ) |
16 |
15
|
rspcev |
|- ( ( 1 e. NN /\ A < ( B ^ 1 ) ) -> E. k e. NN A < ( B ^ k ) ) |
17 |
1 13 16
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ A < 1 ) -> E. k e. NN A < ( B ^ k ) ) |
18 |
|
peano2rem |
|- ( A e. RR -> ( A - 1 ) e. RR ) |
19 |
18
|
adantr |
|- ( ( A e. RR /\ ( B e. RR /\ 1 < B ) ) -> ( A - 1 ) e. RR ) |
20 |
|
peano2rem |
|- ( B e. RR -> ( B - 1 ) e. RR ) |
21 |
20
|
adantr |
|- ( ( B e. RR /\ 1 < B ) -> ( B - 1 ) e. RR ) |
22 |
21
|
adantl |
|- ( ( A e. RR /\ ( B e. RR /\ 1 < B ) ) -> ( B - 1 ) e. RR ) |
23 |
|
posdif |
|- ( ( 1 e. RR /\ B e. RR ) -> ( 1 < B <-> 0 < ( B - 1 ) ) ) |
24 |
2 23
|
mpan |
|- ( B e. RR -> ( 1 < B <-> 0 < ( B - 1 ) ) ) |
25 |
24
|
biimpa |
|- ( ( B e. RR /\ 1 < B ) -> 0 < ( B - 1 ) ) |
26 |
25
|
gt0ne0d |
|- ( ( B e. RR /\ 1 < B ) -> ( B - 1 ) =/= 0 ) |
27 |
26
|
adantl |
|- ( ( A e. RR /\ ( B e. RR /\ 1 < B ) ) -> ( B - 1 ) =/= 0 ) |
28 |
19 22 27
|
redivcld |
|- ( ( A e. RR /\ ( B e. RR /\ 1 < B ) ) -> ( ( A - 1 ) / ( B - 1 ) ) e. RR ) |
29 |
28
|
adantll |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( A - 1 ) / ( B - 1 ) ) e. RR ) |
30 |
18
|
adantl |
|- ( ( 1 <_ A /\ A e. RR ) -> ( A - 1 ) e. RR ) |
31 |
|
subge0 |
|- ( ( A e. RR /\ 1 e. RR ) -> ( 0 <_ ( A - 1 ) <-> 1 <_ A ) ) |
32 |
2 31
|
mpan2 |
|- ( A e. RR -> ( 0 <_ ( A - 1 ) <-> 1 <_ A ) ) |
33 |
32
|
biimparc |
|- ( ( 1 <_ A /\ A e. RR ) -> 0 <_ ( A - 1 ) ) |
34 |
30 33
|
jca |
|- ( ( 1 <_ A /\ A e. RR ) -> ( ( A - 1 ) e. RR /\ 0 <_ ( A - 1 ) ) ) |
35 |
21 25
|
jca |
|- ( ( B e. RR /\ 1 < B ) -> ( ( B - 1 ) e. RR /\ 0 < ( B - 1 ) ) ) |
36 |
|
divge0 |
|- ( ( ( ( A - 1 ) e. RR /\ 0 <_ ( A - 1 ) ) /\ ( ( B - 1 ) e. RR /\ 0 < ( B - 1 ) ) ) -> 0 <_ ( ( A - 1 ) / ( B - 1 ) ) ) |
37 |
34 35 36
|
syl2an |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> 0 <_ ( ( A - 1 ) / ( B - 1 ) ) ) |
38 |
|
flge0nn0 |
|- ( ( ( ( A - 1 ) / ( B - 1 ) ) e. RR /\ 0 <_ ( ( A - 1 ) / ( B - 1 ) ) ) -> ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) e. NN0 ) |
39 |
29 37 38
|
syl2anc |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) e. NN0 ) |
40 |
|
nn0p1nn |
|- ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) e. NN0 -> ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN ) |
41 |
39 40
|
syl |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN ) |
42 |
|
simplr |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> A e. RR ) |
43 |
21
|
adantl |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( B - 1 ) e. RR ) |
44 |
|
peano2nn0 |
|- ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) e. NN0 -> ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN0 ) |
45 |
39 44
|
syl |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN0 ) |
46 |
45
|
nn0red |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. RR ) |
47 |
43 46
|
remulcld |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR ) |
48 |
|
peano2re |
|- ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR -> ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) e. RR ) |
49 |
47 48
|
syl |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) e. RR ) |
50 |
|
simprl |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> B e. RR ) |
51 |
|
reexpcl |
|- ( ( B e. RR /\ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN0 ) -> ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR ) |
52 |
50 45 51
|
syl2anc |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR ) |
53 |
|
flltp1 |
|- ( ( ( A - 1 ) / ( B - 1 ) ) e. RR -> ( ( A - 1 ) / ( B - 1 ) ) < ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) |
54 |
29 53
|
syl |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( A - 1 ) / ( B - 1 ) ) < ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) |
55 |
30
|
adantr |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( A - 1 ) e. RR ) |
56 |
25
|
adantl |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> 0 < ( B - 1 ) ) |
57 |
|
ltdivmul |
|- ( ( ( A - 1 ) e. RR /\ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. RR /\ ( ( B - 1 ) e. RR /\ 0 < ( B - 1 ) ) ) -> ( ( ( A - 1 ) / ( B - 1 ) ) < ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) <-> ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) ) |
58 |
55 46 43 56 57
|
syl112anc |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( ( A - 1 ) / ( B - 1 ) ) < ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) <-> ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) ) |
59 |
54 58
|
mpbid |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) |
60 |
|
ltsubadd |
|- ( ( A e. RR /\ 1 e. RR /\ ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR ) -> ( ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) <-> A < ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) ) ) |
61 |
2 60
|
mp3an2 |
|- ( ( A e. RR /\ ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) e. RR ) -> ( ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) <-> A < ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) ) ) |
62 |
42 47 61
|
syl2anc |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( A - 1 ) < ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) <-> A < ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) ) ) |
63 |
59 62
|
mpbid |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> A < ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) ) |
64 |
|
0lt1 |
|- 0 < 1 |
65 |
|
0re |
|- 0 e. RR |
66 |
|
lttr |
|- ( ( 0 e. RR /\ 1 e. RR /\ B e. RR ) -> ( ( 0 < 1 /\ 1 < B ) -> 0 < B ) ) |
67 |
65 2 66
|
mp3an12 |
|- ( B e. RR -> ( ( 0 < 1 /\ 1 < B ) -> 0 < B ) ) |
68 |
64 67
|
mpani |
|- ( B e. RR -> ( 1 < B -> 0 < B ) ) |
69 |
|
ltle |
|- ( ( 0 e. RR /\ B e. RR ) -> ( 0 < B -> 0 <_ B ) ) |
70 |
65 69
|
mpan |
|- ( B e. RR -> ( 0 < B -> 0 <_ B ) ) |
71 |
68 70
|
syld |
|- ( B e. RR -> ( 1 < B -> 0 <_ B ) ) |
72 |
71
|
imp |
|- ( ( B e. RR /\ 1 < B ) -> 0 <_ B ) |
73 |
72
|
adantl |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> 0 <_ B ) |
74 |
|
bernneq2 |
|- ( ( B e. RR /\ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN0 /\ 0 <_ B ) -> ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) <_ ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) |
75 |
50 45 73 74
|
syl3anc |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> ( ( ( B - 1 ) x. ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) + 1 ) <_ ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) |
76 |
42 49 52 63 75
|
ltletrd |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> A < ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) |
77 |
|
oveq2 |
|- ( k = ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) -> ( B ^ k ) = ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) |
78 |
77
|
breq2d |
|- ( k = ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) -> ( A < ( B ^ k ) <-> A < ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) ) |
79 |
78
|
rspcev |
|- ( ( ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) e. NN /\ A < ( B ^ ( ( |_ ` ( ( A - 1 ) / ( B - 1 ) ) ) + 1 ) ) ) -> E. k e. NN A < ( B ^ k ) ) |
80 |
41 76 79
|
syl2anc |
|- ( ( ( 1 <_ A /\ A e. RR ) /\ ( B e. RR /\ 1 < B ) ) -> E. k e. NN A < ( B ^ k ) ) |
81 |
80
|
exp43 |
|- ( 1 <_ A -> ( A e. RR -> ( B e. RR -> ( 1 < B -> E. k e. NN A < ( B ^ k ) ) ) ) ) |
82 |
81
|
com4l |
|- ( A e. RR -> ( B e. RR -> ( 1 < B -> ( 1 <_ A -> E. k e. NN A < ( B ^ k ) ) ) ) ) |
83 |
82
|
3imp1 |
|- ( ( ( A e. RR /\ B e. RR /\ 1 < B ) /\ 1 <_ A ) -> E. k e. NN A < ( B ^ k ) ) |
84 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> A e. RR ) |
85 |
|
1red |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> 1 e. RR ) |
86 |
17 83 84 85
|
ltlecasei |
|- ( ( A e. RR /\ B e. RR /\ 1 < B ) -> E. k e. NN A < ( B ^ k ) ) |