Description: A nonnegative integer power is nonzero if its base is nonzero. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | expcld.1 | |- ( ph -> A e. CC ) |
|
| sqrecd.1 | |- ( ph -> A =/= 0 ) |
||
| expclzd.3 | |- ( ph -> N e. ZZ ) |
||
| Assertion | expne0d | |- ( ph -> ( A ^ N ) =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expcld.1 | |- ( ph -> A e. CC ) |
|
| 2 | sqrecd.1 | |- ( ph -> A =/= 0 ) |
|
| 3 | expclzd.3 | |- ( ph -> N e. ZZ ) |
|
| 4 | expne0i | |- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ N ) =/= 0 ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( A ^ N ) =/= 0 ) |