Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
2 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
3 |
2
|
adantl |
|- ( ( A e. CC /\ N e. NN ) -> N =/= 0 ) |
4 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
5 |
4
|
adantl |
|- ( ( A e. CC /\ N e. NN ) -> N e. CC ) |
6 |
5
|
negeq0d |
|- ( ( A e. CC /\ N e. NN ) -> ( N = 0 <-> -u N = 0 ) ) |
7 |
6
|
necon3abid |
|- ( ( A e. CC /\ N e. NN ) -> ( N =/= 0 <-> -. -u N = 0 ) ) |
8 |
3 7
|
mpbid |
|- ( ( A e. CC /\ N e. NN ) -> -. -u N = 0 ) |
9 |
8
|
iffalsed |
|- ( ( A e. CC /\ N e. NN ) -> if ( -u N = 0 , 1 , if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) = if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) |
10 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
11 |
10
|
adantl |
|- ( ( A e. CC /\ N e. NN ) -> N e. NN0 ) |
12 |
|
nn0nlt0 |
|- ( N e. NN0 -> -. N < 0 ) |
13 |
11 12
|
syl |
|- ( ( A e. CC /\ N e. NN ) -> -. N < 0 ) |
14 |
11
|
nn0red |
|- ( ( A e. CC /\ N e. NN ) -> N e. RR ) |
15 |
14
|
lt0neg1d |
|- ( ( A e. CC /\ N e. NN ) -> ( N < 0 <-> 0 < -u N ) ) |
16 |
13 15
|
mtbid |
|- ( ( A e. CC /\ N e. NN ) -> -. 0 < -u N ) |
17 |
16
|
iffalsed |
|- ( ( A e. CC /\ N e. NN ) -> if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) |
18 |
5
|
negnegd |
|- ( ( A e. CC /\ N e. NN ) -> -u -u N = N ) |
19 |
18
|
fveq2d |
|- ( ( A e. CC /\ N e. NN ) -> ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
20 |
19
|
oveq2d |
|- ( ( A e. CC /\ N e. NN ) -> ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) ) |
21 |
9 17 20
|
3eqtrd |
|- ( ( A e. CC /\ N e. NN ) -> if ( -u N = 0 , 1 , if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) ) |
22 |
|
nnnegz |
|- ( N e. NN -> -u N e. ZZ ) |
23 |
|
expval |
|- ( ( A e. CC /\ -u N e. ZZ ) -> ( A ^ -u N ) = if ( -u N = 0 , 1 , if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) ) |
24 |
22 23
|
sylan2 |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ -u N ) = if ( -u N = 0 , 1 , if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) ) |
25 |
|
expnnval |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
26 |
25
|
oveq2d |
|- ( ( A e. CC /\ N e. NN ) -> ( 1 / ( A ^ N ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) ) |
27 |
21 24 26
|
3eqtr4d |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
28 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
29 |
28
|
eqcomi |
|- 1 = ( 1 / 1 ) |
30 |
|
negeq |
|- ( N = 0 -> -u N = -u 0 ) |
31 |
|
neg0 |
|- -u 0 = 0 |
32 |
30 31
|
eqtrdi |
|- ( N = 0 -> -u N = 0 ) |
33 |
32
|
oveq2d |
|- ( N = 0 -> ( A ^ -u N ) = ( A ^ 0 ) ) |
34 |
|
exp0 |
|- ( A e. CC -> ( A ^ 0 ) = 1 ) |
35 |
33 34
|
sylan9eqr |
|- ( ( A e. CC /\ N = 0 ) -> ( A ^ -u N ) = 1 ) |
36 |
|
oveq2 |
|- ( N = 0 -> ( A ^ N ) = ( A ^ 0 ) ) |
37 |
36 34
|
sylan9eqr |
|- ( ( A e. CC /\ N = 0 ) -> ( A ^ N ) = 1 ) |
38 |
37
|
oveq2d |
|- ( ( A e. CC /\ N = 0 ) -> ( 1 / ( A ^ N ) ) = ( 1 / 1 ) ) |
39 |
29 35 38
|
3eqtr4a |
|- ( ( A e. CC /\ N = 0 ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
40 |
27 39
|
jaodan |
|- ( ( A e. CC /\ ( N e. NN \/ N = 0 ) ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
41 |
1 40
|
sylan2b |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |