| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 |  |-  ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) | 
						
							| 2 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 3 | 2 | adantl |  |-  ( ( A e. CC /\ N e. NN ) -> N =/= 0 ) | 
						
							| 4 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 5 | 4 | adantl |  |-  ( ( A e. CC /\ N e. NN ) -> N e. CC ) | 
						
							| 6 | 5 | negeq0d |  |-  ( ( A e. CC /\ N e. NN ) -> ( N = 0 <-> -u N = 0 ) ) | 
						
							| 7 | 6 | necon3abid |  |-  ( ( A e. CC /\ N e. NN ) -> ( N =/= 0 <-> -. -u N = 0 ) ) | 
						
							| 8 | 3 7 | mpbid |  |-  ( ( A e. CC /\ N e. NN ) -> -. -u N = 0 ) | 
						
							| 9 | 8 | iffalsed |  |-  ( ( A e. CC /\ N e. NN ) -> if ( -u N = 0 , 1 , if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) = if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) | 
						
							| 10 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 11 | 10 | adantl |  |-  ( ( A e. CC /\ N e. NN ) -> N e. NN0 ) | 
						
							| 12 |  | nn0nlt0 |  |-  ( N e. NN0 -> -. N < 0 ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( A e. CC /\ N e. NN ) -> -. N < 0 ) | 
						
							| 14 | 11 | nn0red |  |-  ( ( A e. CC /\ N e. NN ) -> N e. RR ) | 
						
							| 15 | 14 | lt0neg1d |  |-  ( ( A e. CC /\ N e. NN ) -> ( N < 0 <-> 0 < -u N ) ) | 
						
							| 16 | 13 15 | mtbid |  |-  ( ( A e. CC /\ N e. NN ) -> -. 0 < -u N ) | 
						
							| 17 | 16 | iffalsed |  |-  ( ( A e. CC /\ N e. NN ) -> if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) | 
						
							| 18 | 5 | negnegd |  |-  ( ( A e. CC /\ N e. NN ) -> -u -u N = N ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ( A e. CC /\ N e. NN ) -> ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( A e. CC /\ N e. NN ) -> ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) ) | 
						
							| 21 | 9 17 20 | 3eqtrd |  |-  ( ( A e. CC /\ N e. NN ) -> if ( -u N = 0 , 1 , if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) ) | 
						
							| 22 |  | nnnegz |  |-  ( N e. NN -> -u N e. ZZ ) | 
						
							| 23 |  | expval |  |-  ( ( A e. CC /\ -u N e. ZZ ) -> ( A ^ -u N ) = if ( -u N = 0 , 1 , if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) ) | 
						
							| 24 | 22 23 | sylan2 |  |-  ( ( A e. CC /\ N e. NN ) -> ( A ^ -u N ) = if ( -u N = 0 , 1 , if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) ) | 
						
							| 25 |  | expnnval |  |-  ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) | 
						
							| 26 | 25 | oveq2d |  |-  ( ( A e. CC /\ N e. NN ) -> ( 1 / ( A ^ N ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) ) | 
						
							| 27 | 21 24 26 | 3eqtr4d |  |-  ( ( A e. CC /\ N e. NN ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) | 
						
							| 28 |  | 1div1e1 |  |-  ( 1 / 1 ) = 1 | 
						
							| 29 | 28 | eqcomi |  |-  1 = ( 1 / 1 ) | 
						
							| 30 |  | negeq |  |-  ( N = 0 -> -u N = -u 0 ) | 
						
							| 31 |  | neg0 |  |-  -u 0 = 0 | 
						
							| 32 | 30 31 | eqtrdi |  |-  ( N = 0 -> -u N = 0 ) | 
						
							| 33 | 32 | oveq2d |  |-  ( N = 0 -> ( A ^ -u N ) = ( A ^ 0 ) ) | 
						
							| 34 |  | exp0 |  |-  ( A e. CC -> ( A ^ 0 ) = 1 ) | 
						
							| 35 | 33 34 | sylan9eqr |  |-  ( ( A e. CC /\ N = 0 ) -> ( A ^ -u N ) = 1 ) | 
						
							| 36 |  | oveq2 |  |-  ( N = 0 -> ( A ^ N ) = ( A ^ 0 ) ) | 
						
							| 37 | 36 34 | sylan9eqr |  |-  ( ( A e. CC /\ N = 0 ) -> ( A ^ N ) = 1 ) | 
						
							| 38 | 37 | oveq2d |  |-  ( ( A e. CC /\ N = 0 ) -> ( 1 / ( A ^ N ) ) = ( 1 / 1 ) ) | 
						
							| 39 | 29 35 38 | 3eqtr4a |  |-  ( ( A e. CC /\ N = 0 ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) | 
						
							| 40 | 27 39 | jaodan |  |-  ( ( A e. CC /\ ( N e. NN \/ N = 0 ) ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) | 
						
							| 41 | 1 40 | sylan2b |  |-  ( ( A e. CC /\ N e. NN0 ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |