| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 2 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 3 |
2
|
adantl |
|- ( ( A e. CC /\ N e. NN ) -> N =/= 0 ) |
| 4 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 5 |
4
|
adantl |
|- ( ( A e. CC /\ N e. NN ) -> N e. CC ) |
| 6 |
5
|
negeq0d |
|- ( ( A e. CC /\ N e. NN ) -> ( N = 0 <-> -u N = 0 ) ) |
| 7 |
6
|
necon3abid |
|- ( ( A e. CC /\ N e. NN ) -> ( N =/= 0 <-> -. -u N = 0 ) ) |
| 8 |
3 7
|
mpbid |
|- ( ( A e. CC /\ N e. NN ) -> -. -u N = 0 ) |
| 9 |
8
|
iffalsed |
|- ( ( A e. CC /\ N e. NN ) -> if ( -u N = 0 , 1 , if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) = if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) |
| 10 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 11 |
10
|
adantl |
|- ( ( A e. CC /\ N e. NN ) -> N e. NN0 ) |
| 12 |
|
nn0nlt0 |
|- ( N e. NN0 -> -. N < 0 ) |
| 13 |
11 12
|
syl |
|- ( ( A e. CC /\ N e. NN ) -> -. N < 0 ) |
| 14 |
11
|
nn0red |
|- ( ( A e. CC /\ N e. NN ) -> N e. RR ) |
| 15 |
14
|
lt0neg1d |
|- ( ( A e. CC /\ N e. NN ) -> ( N < 0 <-> 0 < -u N ) ) |
| 16 |
13 15
|
mtbid |
|- ( ( A e. CC /\ N e. NN ) -> -. 0 < -u N ) |
| 17 |
16
|
iffalsed |
|- ( ( A e. CC /\ N e. NN ) -> if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) |
| 18 |
5
|
negnegd |
|- ( ( A e. CC /\ N e. NN ) -> -u -u N = N ) |
| 19 |
18
|
fveq2d |
|- ( ( A e. CC /\ N e. NN ) -> ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
| 20 |
19
|
oveq2d |
|- ( ( A e. CC /\ N e. NN ) -> ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) ) |
| 21 |
9 17 20
|
3eqtrd |
|- ( ( A e. CC /\ N e. NN ) -> if ( -u N = 0 , 1 , if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) ) |
| 22 |
|
nnnegz |
|- ( N e. NN -> -u N e. ZZ ) |
| 23 |
|
expval |
|- ( ( A e. CC /\ -u N e. ZZ ) -> ( A ^ -u N ) = if ( -u N = 0 , 1 , if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) ) |
| 24 |
22 23
|
sylan2 |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ -u N ) = if ( -u N = 0 , 1 , if ( 0 < -u N , ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u -u N ) ) ) ) ) |
| 25 |
|
expnnval |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
| 26 |
25
|
oveq2d |
|- ( ( A e. CC /\ N e. NN ) -> ( 1 / ( A ^ N ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) ) |
| 27 |
21 24 26
|
3eqtr4d |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
| 28 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 29 |
28
|
eqcomi |
|- 1 = ( 1 / 1 ) |
| 30 |
|
negeq |
|- ( N = 0 -> -u N = -u 0 ) |
| 31 |
|
neg0 |
|- -u 0 = 0 |
| 32 |
30 31
|
eqtrdi |
|- ( N = 0 -> -u N = 0 ) |
| 33 |
32
|
oveq2d |
|- ( N = 0 -> ( A ^ -u N ) = ( A ^ 0 ) ) |
| 34 |
|
exp0 |
|- ( A e. CC -> ( A ^ 0 ) = 1 ) |
| 35 |
33 34
|
sylan9eqr |
|- ( ( A e. CC /\ N = 0 ) -> ( A ^ -u N ) = 1 ) |
| 36 |
|
oveq2 |
|- ( N = 0 -> ( A ^ N ) = ( A ^ 0 ) ) |
| 37 |
36 34
|
sylan9eqr |
|- ( ( A e. CC /\ N = 0 ) -> ( A ^ N ) = 1 ) |
| 38 |
37
|
oveq2d |
|- ( ( A e. CC /\ N = 0 ) -> ( 1 / ( A ^ N ) ) = ( 1 / 1 ) ) |
| 39 |
29 35 38
|
3eqtr4a |
|- ( ( A e. CC /\ N = 0 ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
| 40 |
27 39
|
jaodan |
|- ( ( A e. CC /\ ( N e. NN \/ N = 0 ) ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
| 41 |
1 40
|
sylan2b |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |