Metamath Proof Explorer


Theorem expneg2

Description: Value of a complex number raised to a negative integer power. (Contributed by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expneg2
|- ( ( A e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) )

Proof

Step Hyp Ref Expression
1 negneg
 |-  ( N e. CC -> -u -u N = N )
2 1 3ad2ant2
 |-  ( ( A e. CC /\ N e. CC /\ -u N e. NN0 ) -> -u -u N = N )
3 2 oveq2d
 |-  ( ( A e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( A ^ -u -u N ) = ( A ^ N ) )
4 expneg
 |-  ( ( A e. CC /\ -u N e. NN0 ) -> ( A ^ -u -u N ) = ( 1 / ( A ^ -u N ) ) )
5 4 3adant2
 |-  ( ( A e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( A ^ -u -u N ) = ( 1 / ( A ^ -u N ) ) )
6 3 5 eqtr3d
 |-  ( ( A e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) )