| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn0 |
|- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) |
| 2 |
|
expneg |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
| 3 |
2
|
ex |
|- ( A e. CC -> ( N e. NN0 -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) ) |
| 4 |
3
|
ad2antrr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ N e. RR ) -> ( N e. NN0 -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) ) |
| 5 |
|
simpll |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> A e. CC ) |
| 6 |
|
simprl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> N e. RR ) |
| 7 |
6
|
recnd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> N e. CC ) |
| 8 |
|
simprr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> -u N e. NN0 ) |
| 9 |
|
expneg2 |
|- ( ( A e. CC /\ N e. CC /\ -u N e. NN0 ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
| 10 |
5 7 8 9
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> ( A ^ N ) = ( 1 / ( A ^ -u N ) ) ) |
| 11 |
10
|
oveq2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> ( 1 / ( A ^ N ) ) = ( 1 / ( 1 / ( A ^ -u N ) ) ) ) |
| 12 |
|
expcl |
|- ( ( A e. CC /\ -u N e. NN0 ) -> ( A ^ -u N ) e. CC ) |
| 13 |
12
|
ad2ant2rl |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> ( A ^ -u N ) e. CC ) |
| 14 |
|
simplr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> A =/= 0 ) |
| 15 |
8
|
nn0zd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> -u N e. ZZ ) |
| 16 |
|
expne0i |
|- ( ( A e. CC /\ A =/= 0 /\ -u N e. ZZ ) -> ( A ^ -u N ) =/= 0 ) |
| 17 |
5 14 15 16
|
syl3anc |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> ( A ^ -u N ) =/= 0 ) |
| 18 |
13 17
|
recrecd |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> ( 1 / ( 1 / ( A ^ -u N ) ) ) = ( A ^ -u N ) ) |
| 19 |
11 18
|
eqtr2d |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. RR /\ -u N e. NN0 ) ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |
| 20 |
19
|
expr |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ N e. RR ) -> ( -u N e. NN0 -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) ) |
| 21 |
4 20
|
jaod |
|- ( ( ( A e. CC /\ A =/= 0 ) /\ N e. RR ) -> ( ( N e. NN0 \/ -u N e. NN0 ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) ) |
| 22 |
21
|
expimpd |
|- ( ( A e. CC /\ A =/= 0 ) -> ( ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) ) |
| 23 |
1 22
|
biimtrid |
|- ( ( A e. CC /\ A =/= 0 ) -> ( N e. ZZ -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) ) |
| 24 |
23
|
3impia |
|- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ -u N ) = ( 1 / ( A ^ N ) ) ) |