Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
2 |
|
rpne0 |
|- ( A e. RR+ -> A =/= 0 ) |
3 |
1 2
|
rereccld |
|- ( A e. RR+ -> ( 1 / A ) e. RR ) |
4 |
|
expnbnd |
|- ( ( ( 1 / A ) e. RR /\ B e. RR /\ 1 < B ) -> E. k e. NN ( 1 / A ) < ( B ^ k ) ) |
5 |
3 4
|
syl3an1 |
|- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> E. k e. NN ( 1 / A ) < ( B ^ k ) ) |
6 |
|
rpregt0 |
|- ( A e. RR+ -> ( A e. RR /\ 0 < A ) ) |
7 |
6
|
3ad2ant1 |
|- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> ( A e. RR /\ 0 < A ) ) |
8 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
9 |
|
reexpcl |
|- ( ( B e. RR /\ k e. NN0 ) -> ( B ^ k ) e. RR ) |
10 |
8 9
|
sylan2 |
|- ( ( B e. RR /\ k e. NN ) -> ( B ^ k ) e. RR ) |
11 |
10
|
adantlr |
|- ( ( ( B e. RR /\ 1 < B ) /\ k e. NN ) -> ( B ^ k ) e. RR ) |
12 |
|
simpll |
|- ( ( ( B e. RR /\ 1 < B ) /\ k e. NN ) -> B e. RR ) |
13 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
14 |
13
|
adantl |
|- ( ( ( B e. RR /\ 1 < B ) /\ k e. NN ) -> k e. ZZ ) |
15 |
|
0lt1 |
|- 0 < 1 |
16 |
|
0re |
|- 0 e. RR |
17 |
|
1re |
|- 1 e. RR |
18 |
|
lttr |
|- ( ( 0 e. RR /\ 1 e. RR /\ B e. RR ) -> ( ( 0 < 1 /\ 1 < B ) -> 0 < B ) ) |
19 |
16 17 18
|
mp3an12 |
|- ( B e. RR -> ( ( 0 < 1 /\ 1 < B ) -> 0 < B ) ) |
20 |
15 19
|
mpani |
|- ( B e. RR -> ( 1 < B -> 0 < B ) ) |
21 |
20
|
imp |
|- ( ( B e. RR /\ 1 < B ) -> 0 < B ) |
22 |
21
|
adantr |
|- ( ( ( B e. RR /\ 1 < B ) /\ k e. NN ) -> 0 < B ) |
23 |
|
expgt0 |
|- ( ( B e. RR /\ k e. ZZ /\ 0 < B ) -> 0 < ( B ^ k ) ) |
24 |
12 14 22 23
|
syl3anc |
|- ( ( ( B e. RR /\ 1 < B ) /\ k e. NN ) -> 0 < ( B ^ k ) ) |
25 |
11 24
|
jca |
|- ( ( ( B e. RR /\ 1 < B ) /\ k e. NN ) -> ( ( B ^ k ) e. RR /\ 0 < ( B ^ k ) ) ) |
26 |
25
|
3adantl1 |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ k e. NN ) -> ( ( B ^ k ) e. RR /\ 0 < ( B ^ k ) ) ) |
27 |
|
ltrec1 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( ( B ^ k ) e. RR /\ 0 < ( B ^ k ) ) ) -> ( ( 1 / A ) < ( B ^ k ) <-> ( 1 / ( B ^ k ) ) < A ) ) |
28 |
7 26 27
|
syl2an2r |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ k e. NN ) -> ( ( 1 / A ) < ( B ^ k ) <-> ( 1 / ( B ^ k ) ) < A ) ) |
29 |
28
|
rexbidva |
|- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> ( E. k e. NN ( 1 / A ) < ( B ^ k ) <-> E. k e. NN ( 1 / ( B ^ k ) ) < A ) ) |
30 |
5 29
|
mpbid |
|- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> E. k e. NN ( 1 / ( B ^ k ) ) < A ) |