Metamath Proof Explorer


Theorem expnlbnd2

Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008) (Proof shortened by Mario Carneiro, 5-Jun-2014)

Ref Expression
Assertion expnlbnd2
|- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( 1 / ( B ^ k ) ) < A )

Proof

Step Hyp Ref Expression
1 expnlbnd
 |-  ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> E. j e. NN ( 1 / ( B ^ j ) ) < A )
2 simpl2
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> B e. RR )
3 simpl3
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 1 < B )
4 1re
 |-  1 e. RR
5 ltle
 |-  ( ( 1 e. RR /\ B e. RR ) -> ( 1 < B -> 1 <_ B ) )
6 4 2 5 sylancr
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( 1 < B -> 1 <_ B ) )
7 3 6 mpd
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 1 <_ B )
8 simprr
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> k e. ( ZZ>= ` j ) )
9 leexp2a
 |-  ( ( B e. RR /\ 1 <_ B /\ k e. ( ZZ>= ` j ) ) -> ( B ^ j ) <_ ( B ^ k ) )
10 2 7 8 9 syl3anc
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( B ^ j ) <_ ( B ^ k ) )
11 0red
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 0 e. RR )
12 1red
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 1 e. RR )
13 0lt1
 |-  0 < 1
14 13 a1i
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 0 < 1 )
15 11 12 2 14 3 lttrd
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 0 < B )
16 2 15 elrpd
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> B e. RR+ )
17 nnz
 |-  ( j e. NN -> j e. ZZ )
18 17 ad2antrl
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> j e. ZZ )
19 rpexpcl
 |-  ( ( B e. RR+ /\ j e. ZZ ) -> ( B ^ j ) e. RR+ )
20 16 18 19 syl2anc
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( B ^ j ) e. RR+ )
21 eluzelz
 |-  ( k e. ( ZZ>= ` j ) -> k e. ZZ )
22 21 ad2antll
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> k e. ZZ )
23 rpexpcl
 |-  ( ( B e. RR+ /\ k e. ZZ ) -> ( B ^ k ) e. RR+ )
24 16 22 23 syl2anc
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( B ^ k ) e. RR+ )
25 20 24 lerecd
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( ( B ^ j ) <_ ( B ^ k ) <-> ( 1 / ( B ^ k ) ) <_ ( 1 / ( B ^ j ) ) ) )
26 10 25 mpbid
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( 1 / ( B ^ k ) ) <_ ( 1 / ( B ^ j ) ) )
27 24 rprecred
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( 1 / ( B ^ k ) ) e. RR )
28 20 rprecred
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( 1 / ( B ^ j ) ) e. RR )
29 simpl1
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> A e. RR+ )
30 29 rpred
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> A e. RR )
31 lelttr
 |-  ( ( ( 1 / ( B ^ k ) ) e. RR /\ ( 1 / ( B ^ j ) ) e. RR /\ A e. RR ) -> ( ( ( 1 / ( B ^ k ) ) <_ ( 1 / ( B ^ j ) ) /\ ( 1 / ( B ^ j ) ) < A ) -> ( 1 / ( B ^ k ) ) < A ) )
32 27 28 30 31 syl3anc
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( 1 / ( B ^ k ) ) <_ ( 1 / ( B ^ j ) ) /\ ( 1 / ( B ^ j ) ) < A ) -> ( 1 / ( B ^ k ) ) < A ) )
33 26 32 mpand
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( ( 1 / ( B ^ j ) ) < A -> ( 1 / ( B ^ k ) ) < A ) )
34 33 anassrs
 |-  ( ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( 1 / ( B ^ j ) ) < A -> ( 1 / ( B ^ k ) ) < A ) )
35 34 ralrimdva
 |-  ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ j e. NN ) -> ( ( 1 / ( B ^ j ) ) < A -> A. k e. ( ZZ>= ` j ) ( 1 / ( B ^ k ) ) < A ) )
36 35 reximdva
 |-  ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> ( E. j e. NN ( 1 / ( B ^ j ) ) < A -> E. j e. NN A. k e. ( ZZ>= ` j ) ( 1 / ( B ^ k ) ) < A ) )
37 1 36 mpd
 |-  ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( 1 / ( B ^ k ) ) < A )