Step |
Hyp |
Ref |
Expression |
1 |
|
expnlbnd |
|- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> E. j e. NN ( 1 / ( B ^ j ) ) < A ) |
2 |
|
simpl2 |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> B e. RR ) |
3 |
|
simpl3 |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 1 < B ) |
4 |
|
1re |
|- 1 e. RR |
5 |
|
ltle |
|- ( ( 1 e. RR /\ B e. RR ) -> ( 1 < B -> 1 <_ B ) ) |
6 |
4 2 5
|
sylancr |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( 1 < B -> 1 <_ B ) ) |
7 |
3 6
|
mpd |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 1 <_ B ) |
8 |
|
simprr |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> k e. ( ZZ>= ` j ) ) |
9 |
|
leexp2a |
|- ( ( B e. RR /\ 1 <_ B /\ k e. ( ZZ>= ` j ) ) -> ( B ^ j ) <_ ( B ^ k ) ) |
10 |
2 7 8 9
|
syl3anc |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( B ^ j ) <_ ( B ^ k ) ) |
11 |
|
0red |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 0 e. RR ) |
12 |
|
1red |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 1 e. RR ) |
13 |
|
0lt1 |
|- 0 < 1 |
14 |
13
|
a1i |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 0 < 1 ) |
15 |
11 12 2 14 3
|
lttrd |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> 0 < B ) |
16 |
2 15
|
elrpd |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> B e. RR+ ) |
17 |
|
nnz |
|- ( j e. NN -> j e. ZZ ) |
18 |
17
|
ad2antrl |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> j e. ZZ ) |
19 |
|
rpexpcl |
|- ( ( B e. RR+ /\ j e. ZZ ) -> ( B ^ j ) e. RR+ ) |
20 |
16 18 19
|
syl2anc |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( B ^ j ) e. RR+ ) |
21 |
|
eluzelz |
|- ( k e. ( ZZ>= ` j ) -> k e. ZZ ) |
22 |
21
|
ad2antll |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> k e. ZZ ) |
23 |
|
rpexpcl |
|- ( ( B e. RR+ /\ k e. ZZ ) -> ( B ^ k ) e. RR+ ) |
24 |
16 22 23
|
syl2anc |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( B ^ k ) e. RR+ ) |
25 |
20 24
|
lerecd |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( ( B ^ j ) <_ ( B ^ k ) <-> ( 1 / ( B ^ k ) ) <_ ( 1 / ( B ^ j ) ) ) ) |
26 |
10 25
|
mpbid |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( 1 / ( B ^ k ) ) <_ ( 1 / ( B ^ j ) ) ) |
27 |
24
|
rprecred |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( 1 / ( B ^ k ) ) e. RR ) |
28 |
20
|
rprecred |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( 1 / ( B ^ j ) ) e. RR ) |
29 |
|
simpl1 |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> A e. RR+ ) |
30 |
29
|
rpred |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> A e. RR ) |
31 |
|
lelttr |
|- ( ( ( 1 / ( B ^ k ) ) e. RR /\ ( 1 / ( B ^ j ) ) e. RR /\ A e. RR ) -> ( ( ( 1 / ( B ^ k ) ) <_ ( 1 / ( B ^ j ) ) /\ ( 1 / ( B ^ j ) ) < A ) -> ( 1 / ( B ^ k ) ) < A ) ) |
32 |
27 28 30 31
|
syl3anc |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( 1 / ( B ^ k ) ) <_ ( 1 / ( B ^ j ) ) /\ ( 1 / ( B ^ j ) ) < A ) -> ( 1 / ( B ^ k ) ) < A ) ) |
33 |
26 32
|
mpand |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ ( j e. NN /\ k e. ( ZZ>= ` j ) ) ) -> ( ( 1 / ( B ^ j ) ) < A -> ( 1 / ( B ^ k ) ) < A ) ) |
34 |
33
|
anassrs |
|- ( ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ j e. NN ) /\ k e. ( ZZ>= ` j ) ) -> ( ( 1 / ( B ^ j ) ) < A -> ( 1 / ( B ^ k ) ) < A ) ) |
35 |
34
|
ralrimdva |
|- ( ( ( A e. RR+ /\ B e. RR /\ 1 < B ) /\ j e. NN ) -> ( ( 1 / ( B ^ j ) ) < A -> A. k e. ( ZZ>= ` j ) ( 1 / ( B ^ k ) ) < A ) ) |
36 |
35
|
reximdva |
|- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> ( E. j e. NN ( 1 / ( B ^ j ) ) < A -> E. j e. NN A. k e. ( ZZ>= ` j ) ( 1 / ( B ^ k ) ) < A ) ) |
37 |
1 36
|
mpd |
|- ( ( A e. RR+ /\ B e. RR /\ 1 < B ) -> E. j e. NN A. k e. ( ZZ>= ` j ) ( 1 / ( B ^ k ) ) < A ) |