Metamath Proof Explorer


Theorem expnngt1

Description: If an integer power with a positive integer base is greater than 1, then the exponent is positive. (Contributed by AV, 28-Dec-2022)

Ref Expression
Assertion expnngt1
|- ( ( A e. NN /\ B e. ZZ /\ 1 < ( A ^ B ) ) -> B e. NN )

Proof

Step Hyp Ref Expression
1 elznn
 |-  ( B e. ZZ <-> ( B e. RR /\ ( B e. NN \/ -u B e. NN0 ) ) )
2 2a1
 |-  ( B e. NN -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) )
3 2 a1d
 |-  ( B e. NN -> ( B e. RR -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) ) )
4 nncn
 |-  ( A e. NN -> A e. CC )
5 4 3ad2ant3
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> A e. CC )
6 recn
 |-  ( B e. RR -> B e. CC )
7 6 3ad2ant2
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> B e. CC )
8 simp1
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> -u B e. NN0 )
9 expneg2
 |-  ( ( A e. CC /\ B e. CC /\ -u B e. NN0 ) -> ( A ^ B ) = ( 1 / ( A ^ -u B ) ) )
10 5 7 8 9 syl3anc
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( A ^ B ) = ( 1 / ( A ^ -u B ) ) )
11 10 breq2d
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( 1 < ( A ^ B ) <-> 1 < ( 1 / ( A ^ -u B ) ) ) )
12 nnre
 |-  ( A e. NN -> A e. RR )
13 reexpcl
 |-  ( ( A e. RR /\ -u B e. NN0 ) -> ( A ^ -u B ) e. RR )
14 12 13 sylan
 |-  ( ( A e. NN /\ -u B e. NN0 ) -> ( A ^ -u B ) e. RR )
15 14 ancoms
 |-  ( ( -u B e. NN0 /\ A e. NN ) -> ( A ^ -u B ) e. RR )
16 12 adantl
 |-  ( ( -u B e. NN0 /\ A e. NN ) -> A e. RR )
17 nn0z
 |-  ( -u B e. NN0 -> -u B e. ZZ )
18 17 adantr
 |-  ( ( -u B e. NN0 /\ A e. NN ) -> -u B e. ZZ )
19 nngt0
 |-  ( A e. NN -> 0 < A )
20 19 adantl
 |-  ( ( -u B e. NN0 /\ A e. NN ) -> 0 < A )
21 expgt0
 |-  ( ( A e. RR /\ -u B e. ZZ /\ 0 < A ) -> 0 < ( A ^ -u B ) )
22 16 18 20 21 syl3anc
 |-  ( ( -u B e. NN0 /\ A e. NN ) -> 0 < ( A ^ -u B ) )
23 15 22 jca
 |-  ( ( -u B e. NN0 /\ A e. NN ) -> ( ( A ^ -u B ) e. RR /\ 0 < ( A ^ -u B ) ) )
24 23 3adant2
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( ( A ^ -u B ) e. RR /\ 0 < ( A ^ -u B ) ) )
25 reclt1
 |-  ( ( ( A ^ -u B ) e. RR /\ 0 < ( A ^ -u B ) ) -> ( ( A ^ -u B ) < 1 <-> 1 < ( 1 / ( A ^ -u B ) ) ) )
26 24 25 syl
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( ( A ^ -u B ) < 1 <-> 1 < ( 1 / ( A ^ -u B ) ) ) )
27 12 3ad2ant3
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> A e. RR )
28 nnge1
 |-  ( A e. NN -> 1 <_ A )
29 28 3ad2ant3
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> 1 <_ A )
30 27 8 29 expge1d
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> 1 <_ ( A ^ -u B ) )
31 1red
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> 1 e. RR )
32 15 3adant2
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( A ^ -u B ) e. RR )
33 31 32 lenltd
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( 1 <_ ( A ^ -u B ) <-> -. ( A ^ -u B ) < 1 ) )
34 pm2.21
 |-  ( -. ( A ^ -u B ) < 1 -> ( ( A ^ -u B ) < 1 -> B e. NN ) )
35 33 34 syl6bi
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( 1 <_ ( A ^ -u B ) -> ( ( A ^ -u B ) < 1 -> B e. NN ) ) )
36 30 35 mpd
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( ( A ^ -u B ) < 1 -> B e. NN ) )
37 26 36 sylbird
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( 1 < ( 1 / ( A ^ -u B ) ) -> B e. NN ) )
38 11 37 sylbid
 |-  ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( 1 < ( A ^ B ) -> B e. NN ) )
39 38 3exp
 |-  ( -u B e. NN0 -> ( B e. RR -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) ) )
40 3 39 jaoi
 |-  ( ( B e. NN \/ -u B e. NN0 ) -> ( B e. RR -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) ) )
41 40 impcom
 |-  ( ( B e. RR /\ ( B e. NN \/ -u B e. NN0 ) ) -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) )
42 1 41 sylbi
 |-  ( B e. ZZ -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) )
43 42 3imp21
 |-  ( ( A e. NN /\ B e. ZZ /\ 1 < ( A ^ B ) ) -> B e. NN )