| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn |
|- ( B e. ZZ <-> ( B e. RR /\ ( B e. NN \/ -u B e. NN0 ) ) ) |
| 2 |
|
2a1 |
|- ( B e. NN -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) ) |
| 3 |
2
|
a1d |
|- ( B e. NN -> ( B e. RR -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) ) ) |
| 4 |
|
nncn |
|- ( A e. NN -> A e. CC ) |
| 5 |
4
|
3ad2ant3 |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> A e. CC ) |
| 6 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 7 |
6
|
3ad2ant2 |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> B e. CC ) |
| 8 |
|
simp1 |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> -u B e. NN0 ) |
| 9 |
|
expneg2 |
|- ( ( A e. CC /\ B e. CC /\ -u B e. NN0 ) -> ( A ^ B ) = ( 1 / ( A ^ -u B ) ) ) |
| 10 |
5 7 8 9
|
syl3anc |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( A ^ B ) = ( 1 / ( A ^ -u B ) ) ) |
| 11 |
10
|
breq2d |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( 1 < ( A ^ B ) <-> 1 < ( 1 / ( A ^ -u B ) ) ) ) |
| 12 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
| 13 |
|
reexpcl |
|- ( ( A e. RR /\ -u B e. NN0 ) -> ( A ^ -u B ) e. RR ) |
| 14 |
12 13
|
sylan |
|- ( ( A e. NN /\ -u B e. NN0 ) -> ( A ^ -u B ) e. RR ) |
| 15 |
14
|
ancoms |
|- ( ( -u B e. NN0 /\ A e. NN ) -> ( A ^ -u B ) e. RR ) |
| 16 |
12
|
adantl |
|- ( ( -u B e. NN0 /\ A e. NN ) -> A e. RR ) |
| 17 |
|
nn0z |
|- ( -u B e. NN0 -> -u B e. ZZ ) |
| 18 |
17
|
adantr |
|- ( ( -u B e. NN0 /\ A e. NN ) -> -u B e. ZZ ) |
| 19 |
|
nngt0 |
|- ( A e. NN -> 0 < A ) |
| 20 |
19
|
adantl |
|- ( ( -u B e. NN0 /\ A e. NN ) -> 0 < A ) |
| 21 |
|
expgt0 |
|- ( ( A e. RR /\ -u B e. ZZ /\ 0 < A ) -> 0 < ( A ^ -u B ) ) |
| 22 |
16 18 20 21
|
syl3anc |
|- ( ( -u B e. NN0 /\ A e. NN ) -> 0 < ( A ^ -u B ) ) |
| 23 |
15 22
|
jca |
|- ( ( -u B e. NN0 /\ A e. NN ) -> ( ( A ^ -u B ) e. RR /\ 0 < ( A ^ -u B ) ) ) |
| 24 |
23
|
3adant2 |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( ( A ^ -u B ) e. RR /\ 0 < ( A ^ -u B ) ) ) |
| 25 |
|
reclt1 |
|- ( ( ( A ^ -u B ) e. RR /\ 0 < ( A ^ -u B ) ) -> ( ( A ^ -u B ) < 1 <-> 1 < ( 1 / ( A ^ -u B ) ) ) ) |
| 26 |
24 25
|
syl |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( ( A ^ -u B ) < 1 <-> 1 < ( 1 / ( A ^ -u B ) ) ) ) |
| 27 |
12
|
3ad2ant3 |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> A e. RR ) |
| 28 |
|
nnge1 |
|- ( A e. NN -> 1 <_ A ) |
| 29 |
28
|
3ad2ant3 |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> 1 <_ A ) |
| 30 |
27 8 29
|
expge1d |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> 1 <_ ( A ^ -u B ) ) |
| 31 |
|
1red |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> 1 e. RR ) |
| 32 |
15
|
3adant2 |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( A ^ -u B ) e. RR ) |
| 33 |
31 32
|
lenltd |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( 1 <_ ( A ^ -u B ) <-> -. ( A ^ -u B ) < 1 ) ) |
| 34 |
|
pm2.21 |
|- ( -. ( A ^ -u B ) < 1 -> ( ( A ^ -u B ) < 1 -> B e. NN ) ) |
| 35 |
33 34
|
biimtrdi |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( 1 <_ ( A ^ -u B ) -> ( ( A ^ -u B ) < 1 -> B e. NN ) ) ) |
| 36 |
30 35
|
mpd |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( ( A ^ -u B ) < 1 -> B e. NN ) ) |
| 37 |
26 36
|
sylbird |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( 1 < ( 1 / ( A ^ -u B ) ) -> B e. NN ) ) |
| 38 |
11 37
|
sylbid |
|- ( ( -u B e. NN0 /\ B e. RR /\ A e. NN ) -> ( 1 < ( A ^ B ) -> B e. NN ) ) |
| 39 |
38
|
3exp |
|- ( -u B e. NN0 -> ( B e. RR -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) ) ) |
| 40 |
3 39
|
jaoi |
|- ( ( B e. NN \/ -u B e. NN0 ) -> ( B e. RR -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) ) ) |
| 41 |
40
|
impcom |
|- ( ( B e. RR /\ ( B e. NN \/ -u B e. NN0 ) ) -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) ) |
| 42 |
1 41
|
sylbi |
|- ( B e. ZZ -> ( A e. NN -> ( 1 < ( A ^ B ) -> B e. NN ) ) ) |
| 43 |
42
|
3imp21 |
|- ( ( A e. NN /\ B e. ZZ /\ 1 < ( A ^ B ) ) -> B e. NN ) |