Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2nn |
|- ( A e. ( ZZ>= ` 2 ) -> A e. NN ) |
2 |
1
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> A e. NN ) |
3 |
2
|
adantr |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) /\ 1 < ( A ^ B ) ) -> A e. NN ) |
4 |
|
simplr |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) /\ 1 < ( A ^ B ) ) -> B e. ZZ ) |
5 |
|
simpr |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) /\ 1 < ( A ^ B ) ) -> 1 < ( A ^ B ) ) |
6 |
|
expnngt1 |
|- ( ( A e. NN /\ B e. ZZ /\ 1 < ( A ^ B ) ) -> B e. NN ) |
7 |
3 4 5 6
|
syl3anc |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) /\ 1 < ( A ^ B ) ) -> B e. NN ) |
8 |
2
|
nnred |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> A e. RR ) |
9 |
8
|
adantr |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) /\ B e. NN ) -> A e. RR ) |
10 |
|
simpr |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) /\ B e. NN ) -> B e. NN ) |
11 |
|
eluz2gt1 |
|- ( A e. ( ZZ>= ` 2 ) -> 1 < A ) |
12 |
11
|
adantr |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> 1 < A ) |
13 |
12
|
adantr |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) /\ B e. NN ) -> 1 < A ) |
14 |
|
expgt1 |
|- ( ( A e. RR /\ B e. NN /\ 1 < A ) -> 1 < ( A ^ B ) ) |
15 |
9 10 13 14
|
syl3anc |
|- ( ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) /\ B e. NN ) -> 1 < ( A ^ B ) ) |
16 |
7 15
|
impbida |
|- ( ( A e. ( ZZ>= ` 2 ) /\ B e. ZZ ) -> ( 1 < ( A ^ B ) <-> B e. NN ) ) |