Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
2 |
|
expval |
|- ( ( A e. CC /\ N e. ZZ ) -> ( A ^ N ) = if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) ) |
3 |
1 2
|
sylan2 |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) ) |
4 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
5 |
4
|
neneqd |
|- ( N e. NN -> -. N = 0 ) |
6 |
5
|
iffalsed |
|- ( N e. NN -> if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) = if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) |
7 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
8 |
7
|
iftrued |
|- ( N e. NN -> if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
9 |
6 8
|
eqtrd |
|- ( N e. NN -> if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
10 |
9
|
adantl |
|- ( ( A e. CC /\ N e. NN ) -> if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
11 |
3 10
|
eqtrd |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |