Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
2 |
|
seqp1 |
|- ( N e. ( ZZ>= ` 1 ) -> ( seq 1 ( x. , ( NN X. { A } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) x. ( ( NN X. { A } ) ` ( N + 1 ) ) ) ) |
3 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
4 |
2 3
|
eleq2s |
|- ( N e. NN -> ( seq 1 ( x. , ( NN X. { A } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) x. ( ( NN X. { A } ) ` ( N + 1 ) ) ) ) |
5 |
4
|
adantl |
|- ( ( A e. CC /\ N e. NN ) -> ( seq 1 ( x. , ( NN X. { A } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) x. ( ( NN X. { A } ) ` ( N + 1 ) ) ) ) |
6 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
7 |
|
fvconst2g |
|- ( ( A e. CC /\ ( N + 1 ) e. NN ) -> ( ( NN X. { A } ) ` ( N + 1 ) ) = A ) |
8 |
6 7
|
sylan2 |
|- ( ( A e. CC /\ N e. NN ) -> ( ( NN X. { A } ) ` ( N + 1 ) ) = A ) |
9 |
8
|
oveq2d |
|- ( ( A e. CC /\ N e. NN ) -> ( ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) x. ( ( NN X. { A } ) ` ( N + 1 ) ) ) = ( ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) x. A ) ) |
10 |
5 9
|
eqtrd |
|- ( ( A e. CC /\ N e. NN ) -> ( seq 1 ( x. , ( NN X. { A } ) ) ` ( N + 1 ) ) = ( ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) x. A ) ) |
11 |
|
expnnval |
|- ( ( A e. CC /\ ( N + 1 ) e. NN ) -> ( A ^ ( N + 1 ) ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` ( N + 1 ) ) ) |
12 |
6 11
|
sylan2 |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ ( N + 1 ) ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` ( N + 1 ) ) ) |
13 |
|
expnnval |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ N ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
14 |
13
|
oveq1d |
|- ( ( A e. CC /\ N e. NN ) -> ( ( A ^ N ) x. A ) = ( ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) x. A ) ) |
15 |
10 12 14
|
3eqtr4d |
|- ( ( A e. CC /\ N e. NN ) -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. A ) ) |
16 |
|
exp1 |
|- ( A e. CC -> ( A ^ 1 ) = A ) |
17 |
|
mulid2 |
|- ( A e. CC -> ( 1 x. A ) = A ) |
18 |
16 17
|
eqtr4d |
|- ( A e. CC -> ( A ^ 1 ) = ( 1 x. A ) ) |
19 |
18
|
adantr |
|- ( ( A e. CC /\ N = 0 ) -> ( A ^ 1 ) = ( 1 x. A ) ) |
20 |
|
simpr |
|- ( ( A e. CC /\ N = 0 ) -> N = 0 ) |
21 |
20
|
oveq1d |
|- ( ( A e. CC /\ N = 0 ) -> ( N + 1 ) = ( 0 + 1 ) ) |
22 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
23 |
21 22
|
eqtrdi |
|- ( ( A e. CC /\ N = 0 ) -> ( N + 1 ) = 1 ) |
24 |
23
|
oveq2d |
|- ( ( A e. CC /\ N = 0 ) -> ( A ^ ( N + 1 ) ) = ( A ^ 1 ) ) |
25 |
|
oveq2 |
|- ( N = 0 -> ( A ^ N ) = ( A ^ 0 ) ) |
26 |
|
exp0 |
|- ( A e. CC -> ( A ^ 0 ) = 1 ) |
27 |
25 26
|
sylan9eqr |
|- ( ( A e. CC /\ N = 0 ) -> ( A ^ N ) = 1 ) |
28 |
27
|
oveq1d |
|- ( ( A e. CC /\ N = 0 ) -> ( ( A ^ N ) x. A ) = ( 1 x. A ) ) |
29 |
19 24 28
|
3eqtr4d |
|- ( ( A e. CC /\ N = 0 ) -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. A ) ) |
30 |
15 29
|
jaodan |
|- ( ( A e. CC /\ ( N e. NN \/ N = 0 ) ) -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. A ) ) |
31 |
1 30
|
sylan2b |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. A ) ) |