Metamath Proof Explorer


Theorem expp1z

Description: Value of a nonzero complex number raised to an integer power plus one. (Contributed by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion expp1z
|- ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. A ) )

Proof

Step Hyp Ref Expression
1 1z
 |-  1 e. ZZ
2 expaddz
 |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( N e. ZZ /\ 1 e. ZZ ) ) -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. ( A ^ 1 ) ) )
3 1 2 mpanr2
 |-  ( ( ( A e. CC /\ A =/= 0 ) /\ N e. ZZ ) -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. ( A ^ 1 ) ) )
4 3 3impa
 |-  ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. ( A ^ 1 ) ) )
5 exp1
 |-  ( A e. CC -> ( A ^ 1 ) = A )
6 5 3ad2ant1
 |-  ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ 1 ) = A )
7 6 oveq2d
 |-  ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( ( A ^ N ) x. ( A ^ 1 ) ) = ( ( A ^ N ) x. A ) )
8 4 7 eqtrd
 |-  ( ( A e. CC /\ A =/= 0 /\ N e. ZZ ) -> ( A ^ ( N + 1 ) ) = ( ( A ^ N ) x. A ) )