Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2nn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
2 |
|
eleq1 |
|- ( x = 1 -> ( x e. ( ZZ>= ` 2 ) <-> 1 e. ( ZZ>= ` 2 ) ) ) |
3 |
2
|
imbi1d |
|- ( x = 1 -> ( ( x e. ( ZZ>= ` 2 ) -> E. p e. Prime p || x ) <-> ( 1 e. ( ZZ>= ` 2 ) -> E. p e. Prime p || x ) ) ) |
4 |
|
eleq1 |
|- ( x = y -> ( x e. ( ZZ>= ` 2 ) <-> y e. ( ZZ>= ` 2 ) ) ) |
5 |
|
breq2 |
|- ( x = y -> ( p || x <-> p || y ) ) |
6 |
5
|
rexbidv |
|- ( x = y -> ( E. p e. Prime p || x <-> E. p e. Prime p || y ) ) |
7 |
4 6
|
imbi12d |
|- ( x = y -> ( ( x e. ( ZZ>= ` 2 ) -> E. p e. Prime p || x ) <-> ( y e. ( ZZ>= ` 2 ) -> E. p e. Prime p || y ) ) ) |
8 |
|
eleq1 |
|- ( x = z -> ( x e. ( ZZ>= ` 2 ) <-> z e. ( ZZ>= ` 2 ) ) ) |
9 |
|
breq2 |
|- ( x = z -> ( p || x <-> p || z ) ) |
10 |
9
|
rexbidv |
|- ( x = z -> ( E. p e. Prime p || x <-> E. p e. Prime p || z ) ) |
11 |
8 10
|
imbi12d |
|- ( x = z -> ( ( x e. ( ZZ>= ` 2 ) -> E. p e. Prime p || x ) <-> ( z e. ( ZZ>= ` 2 ) -> E. p e. Prime p || z ) ) ) |
12 |
|
eleq1 |
|- ( x = ( y x. z ) -> ( x e. ( ZZ>= ` 2 ) <-> ( y x. z ) e. ( ZZ>= ` 2 ) ) ) |
13 |
|
breq2 |
|- ( x = ( y x. z ) -> ( p || x <-> p || ( y x. z ) ) ) |
14 |
13
|
rexbidv |
|- ( x = ( y x. z ) -> ( E. p e. Prime p || x <-> E. p e. Prime p || ( y x. z ) ) ) |
15 |
12 14
|
imbi12d |
|- ( x = ( y x. z ) -> ( ( x e. ( ZZ>= ` 2 ) -> E. p e. Prime p || x ) <-> ( ( y x. z ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( y x. z ) ) ) ) |
16 |
|
eleq1 |
|- ( x = N -> ( x e. ( ZZ>= ` 2 ) <-> N e. ( ZZ>= ` 2 ) ) ) |
17 |
|
breq2 |
|- ( x = N -> ( p || x <-> p || N ) ) |
18 |
17
|
rexbidv |
|- ( x = N -> ( E. p e. Prime p || x <-> E. p e. Prime p || N ) ) |
19 |
16 18
|
imbi12d |
|- ( x = N -> ( ( x e. ( ZZ>= ` 2 ) -> E. p e. Prime p || x ) <-> ( N e. ( ZZ>= ` 2 ) -> E. p e. Prime p || N ) ) ) |
20 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
21 |
|
uz2m1nn |
|- ( 1 e. ( ZZ>= ` 2 ) -> ( 1 - 1 ) e. NN ) |
22 |
20 21
|
eqeltrrid |
|- ( 1 e. ( ZZ>= ` 2 ) -> 0 e. NN ) |
23 |
|
0nnn |
|- -. 0 e. NN |
24 |
23
|
pm2.21i |
|- ( 0 e. NN -> E. p e. Prime p || x ) |
25 |
22 24
|
syl |
|- ( 1 e. ( ZZ>= ` 2 ) -> E. p e. Prime p || x ) |
26 |
|
prmz |
|- ( x e. Prime -> x e. ZZ ) |
27 |
|
iddvds |
|- ( x e. ZZ -> x || x ) |
28 |
26 27
|
syl |
|- ( x e. Prime -> x || x ) |
29 |
|
breq1 |
|- ( p = x -> ( p || x <-> x || x ) ) |
30 |
29
|
rspcev |
|- ( ( x e. Prime /\ x || x ) -> E. p e. Prime p || x ) |
31 |
28 30
|
mpdan |
|- ( x e. Prime -> E. p e. Prime p || x ) |
32 |
31
|
a1d |
|- ( x e. Prime -> ( x e. ( ZZ>= ` 2 ) -> E. p e. Prime p || x ) ) |
33 |
|
simpl |
|- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> y e. ( ZZ>= ` 2 ) ) |
34 |
|
eluzelz |
|- ( y e. ( ZZ>= ` 2 ) -> y e. ZZ ) |
35 |
34
|
ad2antrr |
|- ( ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ p e. Prime ) -> y e. ZZ ) |
36 |
|
eluzelz |
|- ( z e. ( ZZ>= ` 2 ) -> z e. ZZ ) |
37 |
36
|
ad2antlr |
|- ( ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ p e. Prime ) -> z e. ZZ ) |
38 |
|
dvdsmul1 |
|- ( ( y e. ZZ /\ z e. ZZ ) -> y || ( y x. z ) ) |
39 |
35 37 38
|
syl2anc |
|- ( ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ p e. Prime ) -> y || ( y x. z ) ) |
40 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
41 |
40
|
adantl |
|- ( ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ p e. Prime ) -> p e. ZZ ) |
42 |
35 37
|
zmulcld |
|- ( ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ p e. Prime ) -> ( y x. z ) e. ZZ ) |
43 |
|
dvdstr |
|- ( ( p e. ZZ /\ y e. ZZ /\ ( y x. z ) e. ZZ ) -> ( ( p || y /\ y || ( y x. z ) ) -> p || ( y x. z ) ) ) |
44 |
41 35 42 43
|
syl3anc |
|- ( ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ p e. Prime ) -> ( ( p || y /\ y || ( y x. z ) ) -> p || ( y x. z ) ) ) |
45 |
39 44
|
mpan2d |
|- ( ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) /\ p e. Prime ) -> ( p || y -> p || ( y x. z ) ) ) |
46 |
45
|
reximdva |
|- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( E. p e. Prime p || y -> E. p e. Prime p || ( y x. z ) ) ) |
47 |
33 46
|
embantd |
|- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ( y e. ( ZZ>= ` 2 ) -> E. p e. Prime p || y ) -> E. p e. Prime p || ( y x. z ) ) ) |
48 |
47
|
a1dd |
|- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ( y e. ( ZZ>= ` 2 ) -> E. p e. Prime p || y ) -> ( ( y x. z ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( y x. z ) ) ) ) |
49 |
48
|
adantrd |
|- ( ( y e. ( ZZ>= ` 2 ) /\ z e. ( ZZ>= ` 2 ) ) -> ( ( ( y e. ( ZZ>= ` 2 ) -> E. p e. Prime p || y ) /\ ( z e. ( ZZ>= ` 2 ) -> E. p e. Prime p || z ) ) -> ( ( y x. z ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( y x. z ) ) ) ) |
50 |
3 7 11 15 19 25 32 49
|
prmind |
|- ( N e. NN -> ( N e. ( ZZ>= ` 2 ) -> E. p e. Prime p || N ) ) |
51 |
1 50
|
mpcom |
|- ( N e. ( ZZ>= ` 2 ) -> E. p e. Prime p || N ) |