Description: Exponent subtraction law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | expcld.1 | |- ( ph -> A e. CC ) |
|
sqrecd.1 | |- ( ph -> A =/= 0 ) |
||
expclzd.3 | |- ( ph -> N e. ZZ ) |
||
expsubd.3 | |- ( ph -> M e. ZZ ) |
||
Assertion | expsubd | |- ( ph -> ( A ^ ( M - N ) ) = ( ( A ^ M ) / ( A ^ N ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcld.1 | |- ( ph -> A e. CC ) |
|
2 | sqrecd.1 | |- ( ph -> A =/= 0 ) |
|
3 | expclzd.3 | |- ( ph -> N e. ZZ ) |
|
4 | expsubd.3 | |- ( ph -> M e. ZZ ) |
|
5 | expsub | |- ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A ^ ( M - N ) ) = ( ( A ^ M ) / ( A ^ N ) ) ) |
|
6 | 1 2 4 3 5 | syl22anc | |- ( ph -> ( A ^ ( M - N ) ) = ( ( A ^ M ) / ( A ^ N ) ) ) |