Metamath Proof Explorer


Theorem expsubd

Description: Exponent subtraction law for nonnegative integer exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1
|- ( ph -> A e. CC )
sqrecd.1
|- ( ph -> A =/= 0 )
expclzd.3
|- ( ph -> N e. ZZ )
expsubd.3
|- ( ph -> M e. ZZ )
Assertion expsubd
|- ( ph -> ( A ^ ( M - N ) ) = ( ( A ^ M ) / ( A ^ N ) ) )

Proof

Step Hyp Ref Expression
1 expcld.1
 |-  ( ph -> A e. CC )
2 sqrecd.1
 |-  ( ph -> A =/= 0 )
3 expclzd.3
 |-  ( ph -> N e. ZZ )
4 expsubd.3
 |-  ( ph -> M e. ZZ )
5 expsub
 |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( A ^ ( M - N ) ) = ( ( A ^ M ) / ( A ^ N ) ) )
6 1 2 4 3 5 syl22anc
 |-  ( ph -> ( A ^ ( M - N ) ) = ( ( A ^ M ) / ( A ^ N ) ) )