| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> A e. RR ) | 
						
							| 2 |  | 2re |  |-  2 e. RR | 
						
							| 3 |  | peano2rem |  |-  ( A e. RR -> ( A - 1 ) e. RR ) | 
						
							| 4 |  | remulcl |  |-  ( ( 2 e. RR /\ ( A - 1 ) e. RR ) -> ( 2 x. ( A - 1 ) ) e. RR ) | 
						
							| 5 | 2 3 4 | sylancr |  |-  ( A e. RR -> ( 2 x. ( A - 1 ) ) e. RR ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> ( 2 x. ( A - 1 ) ) e. RR ) | 
						
							| 7 |  | simp2 |  |-  ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> N e. NN0 ) | 
						
							| 8 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 9 |  | 0re |  |-  0 e. RR | 
						
							| 10 |  | letr |  |-  ( ( 0 e. RR /\ 2 e. RR /\ A e. RR ) -> ( ( 0 <_ 2 /\ 2 <_ A ) -> 0 <_ A ) ) | 
						
							| 11 | 9 2 10 | mp3an12 |  |-  ( A e. RR -> ( ( 0 <_ 2 /\ 2 <_ A ) -> 0 <_ A ) ) | 
						
							| 12 | 8 11 | mpani |  |-  ( A e. RR -> ( 2 <_ A -> 0 <_ A ) ) | 
						
							| 13 | 12 | imp |  |-  ( ( A e. RR /\ 2 <_ A ) -> 0 <_ A ) | 
						
							| 14 |  | resubcl |  |-  ( ( A e. RR /\ 2 e. RR ) -> ( A - 2 ) e. RR ) | 
						
							| 15 | 2 14 | mpan2 |  |-  ( A e. RR -> ( A - 2 ) e. RR ) | 
						
							| 16 |  | leadd2 |  |-  ( ( 2 e. RR /\ A e. RR /\ ( A - 2 ) e. RR ) -> ( 2 <_ A <-> ( ( A - 2 ) + 2 ) <_ ( ( A - 2 ) + A ) ) ) | 
						
							| 17 | 2 16 | mp3an1 |  |-  ( ( A e. RR /\ ( A - 2 ) e. RR ) -> ( 2 <_ A <-> ( ( A - 2 ) + 2 ) <_ ( ( A - 2 ) + A ) ) ) | 
						
							| 18 | 15 17 | mpdan |  |-  ( A e. RR -> ( 2 <_ A <-> ( ( A - 2 ) + 2 ) <_ ( ( A - 2 ) + A ) ) ) | 
						
							| 19 | 18 | biimpa |  |-  ( ( A e. RR /\ 2 <_ A ) -> ( ( A - 2 ) + 2 ) <_ ( ( A - 2 ) + A ) ) | 
						
							| 20 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 21 |  | 2cn |  |-  2 e. CC | 
						
							| 22 |  | npcan |  |-  ( ( A e. CC /\ 2 e. CC ) -> ( ( A - 2 ) + 2 ) = A ) | 
						
							| 23 | 20 21 22 | sylancl |  |-  ( A e. RR -> ( ( A - 2 ) + 2 ) = A ) | 
						
							| 24 | 23 | adantr |  |-  ( ( A e. RR /\ 2 <_ A ) -> ( ( A - 2 ) + 2 ) = A ) | 
						
							| 25 |  | ax-1cn |  |-  1 e. CC | 
						
							| 26 |  | subdi |  |-  ( ( 2 e. CC /\ A e. CC /\ 1 e. CC ) -> ( 2 x. ( A - 1 ) ) = ( ( 2 x. A ) - ( 2 x. 1 ) ) ) | 
						
							| 27 | 21 25 26 | mp3an13 |  |-  ( A e. CC -> ( 2 x. ( A - 1 ) ) = ( ( 2 x. A ) - ( 2 x. 1 ) ) ) | 
						
							| 28 |  | 2times |  |-  ( A e. CC -> ( 2 x. A ) = ( A + A ) ) | 
						
							| 29 |  | 2t1e2 |  |-  ( 2 x. 1 ) = 2 | 
						
							| 30 | 29 | a1i |  |-  ( A e. CC -> ( 2 x. 1 ) = 2 ) | 
						
							| 31 | 28 30 | oveq12d |  |-  ( A e. CC -> ( ( 2 x. A ) - ( 2 x. 1 ) ) = ( ( A + A ) - 2 ) ) | 
						
							| 32 |  | addsub |  |-  ( ( A e. CC /\ A e. CC /\ 2 e. CC ) -> ( ( A + A ) - 2 ) = ( ( A - 2 ) + A ) ) | 
						
							| 33 | 21 32 | mp3an3 |  |-  ( ( A e. CC /\ A e. CC ) -> ( ( A + A ) - 2 ) = ( ( A - 2 ) + A ) ) | 
						
							| 34 | 33 | anidms |  |-  ( A e. CC -> ( ( A + A ) - 2 ) = ( ( A - 2 ) + A ) ) | 
						
							| 35 | 27 31 34 | 3eqtrrd |  |-  ( A e. CC -> ( ( A - 2 ) + A ) = ( 2 x. ( A - 1 ) ) ) | 
						
							| 36 | 20 35 | syl |  |-  ( A e. RR -> ( ( A - 2 ) + A ) = ( 2 x. ( A - 1 ) ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( A e. RR /\ 2 <_ A ) -> ( ( A - 2 ) + A ) = ( 2 x. ( A - 1 ) ) ) | 
						
							| 38 | 19 24 37 | 3brtr3d |  |-  ( ( A e. RR /\ 2 <_ A ) -> A <_ ( 2 x. ( A - 1 ) ) ) | 
						
							| 39 | 13 38 | jca |  |-  ( ( A e. RR /\ 2 <_ A ) -> ( 0 <_ A /\ A <_ ( 2 x. ( A - 1 ) ) ) ) | 
						
							| 40 | 39 | 3adant2 |  |-  ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> ( 0 <_ A /\ A <_ ( 2 x. ( A - 1 ) ) ) ) | 
						
							| 41 |  | leexp1a |  |-  ( ( ( A e. RR /\ ( 2 x. ( A - 1 ) ) e. RR /\ N e. NN0 ) /\ ( 0 <_ A /\ A <_ ( 2 x. ( A - 1 ) ) ) ) -> ( A ^ N ) <_ ( ( 2 x. ( A - 1 ) ) ^ N ) ) | 
						
							| 42 | 1 6 7 40 41 | syl31anc |  |-  ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> ( A ^ N ) <_ ( ( 2 x. ( A - 1 ) ) ^ N ) ) | 
						
							| 43 | 3 | recnd |  |-  ( A e. RR -> ( A - 1 ) e. CC ) | 
						
							| 44 |  | mulexp |  |-  ( ( 2 e. CC /\ ( A - 1 ) e. CC /\ N e. NN0 ) -> ( ( 2 x. ( A - 1 ) ) ^ N ) = ( ( 2 ^ N ) x. ( ( A - 1 ) ^ N ) ) ) | 
						
							| 45 | 21 44 | mp3an1 |  |-  ( ( ( A - 1 ) e. CC /\ N e. NN0 ) -> ( ( 2 x. ( A - 1 ) ) ^ N ) = ( ( 2 ^ N ) x. ( ( A - 1 ) ^ N ) ) ) | 
						
							| 46 | 43 45 | sylan |  |-  ( ( A e. RR /\ N e. NN0 ) -> ( ( 2 x. ( A - 1 ) ) ^ N ) = ( ( 2 ^ N ) x. ( ( A - 1 ) ^ N ) ) ) | 
						
							| 47 | 46 | 3adant3 |  |-  ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> ( ( 2 x. ( A - 1 ) ) ^ N ) = ( ( 2 ^ N ) x. ( ( A - 1 ) ^ N ) ) ) | 
						
							| 48 | 42 47 | breqtrd |  |-  ( ( A e. RR /\ N e. NN0 /\ 2 <_ A ) -> ( A ^ N ) <_ ( ( 2 ^ N ) x. ( ( A - 1 ) ^ N ) ) ) |