Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( x = A /\ y = N ) -> y = N ) |
2 |
1
|
eqeq1d |
|- ( ( x = A /\ y = N ) -> ( y = 0 <-> N = 0 ) ) |
3 |
1
|
breq2d |
|- ( ( x = A /\ y = N ) -> ( 0 < y <-> 0 < N ) ) |
4 |
|
simpl |
|- ( ( x = A /\ y = N ) -> x = A ) |
5 |
4
|
sneqd |
|- ( ( x = A /\ y = N ) -> { x } = { A } ) |
6 |
5
|
xpeq2d |
|- ( ( x = A /\ y = N ) -> ( NN X. { x } ) = ( NN X. { A } ) ) |
7 |
6
|
seqeq3d |
|- ( ( x = A /\ y = N ) -> seq 1 ( x. , ( NN X. { x } ) ) = seq 1 ( x. , ( NN X. { A } ) ) ) |
8 |
7 1
|
fveq12d |
|- ( ( x = A /\ y = N ) -> ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) ) |
9 |
1
|
negeqd |
|- ( ( x = A /\ y = N ) -> -u y = -u N ) |
10 |
7 9
|
fveq12d |
|- ( ( x = A /\ y = N ) -> ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) = ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) |
11 |
10
|
oveq2d |
|- ( ( x = A /\ y = N ) -> ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) = ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) |
12 |
3 8 11
|
ifbieq12d |
|- ( ( x = A /\ y = N ) -> if ( 0 < y , ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) , ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) ) = if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) |
13 |
2 12
|
ifbieq2d |
|- ( ( x = A /\ y = N ) -> if ( y = 0 , 1 , if ( 0 < y , ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) , ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) ) ) = if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) ) |
14 |
|
df-exp |
|- ^ = ( x e. CC , y e. ZZ |-> if ( y = 0 , 1 , if ( 0 < y , ( seq 1 ( x. , ( NN X. { x } ) ) ` y ) , ( 1 / ( seq 1 ( x. , ( NN X. { x } ) ) ` -u y ) ) ) ) ) |
15 |
|
1ex |
|- 1 e. _V |
16 |
|
fvex |
|- ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) e. _V |
17 |
|
ovex |
|- ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) e. _V |
18 |
16 17
|
ifex |
|- if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) e. _V |
19 |
15 18
|
ifex |
|- if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) e. _V |
20 |
13 14 19
|
ovmpoa |
|- ( ( A e. CC /\ N e. ZZ ) -> ( A ^ N ) = if ( N = 0 , 1 , if ( 0 < N , ( seq 1 ( x. , ( NN X. { A } ) ) ` N ) , ( 1 / ( seq 1 ( x. , ( NN X. { A } ) ) ` -u N ) ) ) ) ) |