Metamath Proof Explorer


Theorem exsb

Description: An equivalent expression for existence. One direction ( exsbim ) needs fewer axioms. (Contributed by NM, 2-Feb-2005) Avoid ax-13 . (Revised by Wolf Lammen, 16-Oct-2022)

Ref Expression
Assertion exsb
|- ( E. x ph <-> E. y A. x ( x = y -> ph ) )

Proof

Step Hyp Ref Expression
1 nfv
 |-  F/ y ph
2 nfa1
 |-  F/ x A. x ( x = y -> ph )
3 ax12v
 |-  ( x = y -> ( ph -> A. x ( x = y -> ph ) ) )
4 sp
 |-  ( A. x ( x = y -> ph ) -> ( x = y -> ph ) )
5 4 com12
 |-  ( x = y -> ( A. x ( x = y -> ph ) -> ph ) )
6 3 5 impbid
 |-  ( x = y -> ( ph <-> A. x ( x = y -> ph ) ) )
7 1 2 6 cbvexv1
 |-  ( E. x ph <-> E. y A. x ( x = y -> ph ) )