Metamath Proof Explorer


Theorem exse

Description: Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015)

Ref Expression
Assertion exse
|- ( A e. V -> R Se A )

Proof

Step Hyp Ref Expression
1 rabexg
 |-  ( A e. V -> { y e. A | y R x } e. _V )
2 1 ralrimivw
 |-  ( A e. V -> A. x e. A { y e. A | y R x } e. _V )
3 df-se
 |-  ( R Se A <-> A. x e. A { y e. A | y R x } e. _V )
4 2 3 sylibr
 |-  ( A e. V -> R Se A )