Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | exsimpl | |- ( E. x ( ph /\ ps ) -> E. x ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( ph /\ ps ) -> ph ) |
|
| 2 | 1 | eximi | |- ( E. x ( ph /\ ps ) -> E. x ph ) |