Metamath Proof Explorer


Theorem exsimpl

Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion exsimpl
|- ( E. x ( ph /\ ps ) -> E. x ph )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( ph /\ ps ) -> ph )
2 1 eximi
 |-  ( E. x ( ph /\ ps ) -> E. x ph )