Metamath Proof Explorer


Theorem exsimpr

Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion exsimpr
|- ( E. x ( ph /\ ps ) -> E. x ps )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( ph /\ ps ) -> ps )
2 1 eximi
 |-  ( E. x ( ph /\ ps ) -> E. x ps )