Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010) (Proof shortened by Andrew Salmon, 29-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | exsimpr | |- ( E. x ( ph /\ ps ) -> E. x ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |- ( ( ph /\ ps ) -> ps ) |
|
2 | 1 | eximi | |- ( E. x ( ph /\ ps ) -> E. x ps ) |