Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | exsnrex | |- ( E. x M = { x } <-> E. x e. M M = { x } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnid | |- x e. { x } |
|
2 | eleq2 | |- ( M = { x } -> ( x e. M <-> x e. { x } ) ) |
|
3 | 1 2 | mpbiri | |- ( M = { x } -> x e. M ) |
4 | 3 | pm4.71ri | |- ( M = { x } <-> ( x e. M /\ M = { x } ) ) |
5 | 4 | exbii | |- ( E. x M = { x } <-> E. x ( x e. M /\ M = { x } ) ) |
6 | df-rex | |- ( E. x e. M M = { x } <-> E. x ( x e. M /\ M = { x } ) ) |
|
7 | 5 6 | bitr4i | |- ( E. x M = { x } <-> E. x e. M M = { x } ) |