Step |
Hyp |
Ref |
Expression |
1 |
|
df-rab |
|- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
2 |
1
|
neeq1i |
|- ( { x e. A | ph } =/= (/) <-> { x | ( x e. A /\ ph ) } =/= (/) ) |
3 |
|
rabn0 |
|- ( { x e. A | ph } =/= (/) <-> E. x e. A ph ) |
4 |
|
n0 |
|- ( { x | ( x e. A /\ ph ) } =/= (/) <-> E. z z e. { x | ( x e. A /\ ph ) } ) |
5 |
2 3 4
|
3bitr3i |
|- ( E. x e. A ph <-> E. z z e. { x | ( x e. A /\ ph ) } ) |
6 |
|
vex |
|- z e. _V |
7 |
6
|
snss |
|- ( z e. { x | ( x e. A /\ ph ) } <-> { z } C_ { x | ( x e. A /\ ph ) } ) |
8 |
|
ssab2 |
|- { x | ( x e. A /\ ph ) } C_ A |
9 |
|
sstr2 |
|- ( { z } C_ { x | ( x e. A /\ ph ) } -> ( { x | ( x e. A /\ ph ) } C_ A -> { z } C_ A ) ) |
10 |
8 9
|
mpi |
|- ( { z } C_ { x | ( x e. A /\ ph ) } -> { z } C_ A ) |
11 |
7 10
|
sylbi |
|- ( z e. { x | ( x e. A /\ ph ) } -> { z } C_ A ) |
12 |
|
simpr |
|- ( ( [ z / x ] x e. A /\ [ z / x ] ph ) -> [ z / x ] ph ) |
13 |
|
equsb1v |
|- [ z / x ] x = z |
14 |
|
velsn |
|- ( x e. { z } <-> x = z ) |
15 |
14
|
sbbii |
|- ( [ z / x ] x e. { z } <-> [ z / x ] x = z ) |
16 |
13 15
|
mpbir |
|- [ z / x ] x e. { z } |
17 |
12 16
|
jctil |
|- ( ( [ z / x ] x e. A /\ [ z / x ] ph ) -> ( [ z / x ] x e. { z } /\ [ z / x ] ph ) ) |
18 |
|
df-clab |
|- ( z e. { x | ( x e. A /\ ph ) } <-> [ z / x ] ( x e. A /\ ph ) ) |
19 |
|
sban |
|- ( [ z / x ] ( x e. A /\ ph ) <-> ( [ z / x ] x e. A /\ [ z / x ] ph ) ) |
20 |
18 19
|
bitri |
|- ( z e. { x | ( x e. A /\ ph ) } <-> ( [ z / x ] x e. A /\ [ z / x ] ph ) ) |
21 |
|
df-rab |
|- { x e. { z } | ph } = { x | ( x e. { z } /\ ph ) } |
22 |
21
|
eleq2i |
|- ( z e. { x e. { z } | ph } <-> z e. { x | ( x e. { z } /\ ph ) } ) |
23 |
|
df-clab |
|- ( z e. { x | ( x e. { z } /\ ph ) } <-> [ z / x ] ( x e. { z } /\ ph ) ) |
24 |
|
sban |
|- ( [ z / x ] ( x e. { z } /\ ph ) <-> ( [ z / x ] x e. { z } /\ [ z / x ] ph ) ) |
25 |
22 23 24
|
3bitri |
|- ( z e. { x e. { z } | ph } <-> ( [ z / x ] x e. { z } /\ [ z / x ] ph ) ) |
26 |
17 20 25
|
3imtr4i |
|- ( z e. { x | ( x e. A /\ ph ) } -> z e. { x e. { z } | ph } ) |
27 |
26
|
ne0d |
|- ( z e. { x | ( x e. A /\ ph ) } -> { x e. { z } | ph } =/= (/) ) |
28 |
|
rabn0 |
|- ( { x e. { z } | ph } =/= (/) <-> E. x e. { z } ph ) |
29 |
27 28
|
sylib |
|- ( z e. { x | ( x e. A /\ ph ) } -> E. x e. { z } ph ) |
30 |
|
snex |
|- { z } e. _V |
31 |
|
sseq1 |
|- ( y = { z } -> ( y C_ A <-> { z } C_ A ) ) |
32 |
|
rexeq |
|- ( y = { z } -> ( E. x e. y ph <-> E. x e. { z } ph ) ) |
33 |
31 32
|
anbi12d |
|- ( y = { z } -> ( ( y C_ A /\ E. x e. y ph ) <-> ( { z } C_ A /\ E. x e. { z } ph ) ) ) |
34 |
30 33
|
spcev |
|- ( ( { z } C_ A /\ E. x e. { z } ph ) -> E. y ( y C_ A /\ E. x e. y ph ) ) |
35 |
11 29 34
|
syl2anc |
|- ( z e. { x | ( x e. A /\ ph ) } -> E. y ( y C_ A /\ E. x e. y ph ) ) |
36 |
35
|
exlimiv |
|- ( E. z z e. { x | ( x e. A /\ ph ) } -> E. y ( y C_ A /\ E. x e. y ph ) ) |
37 |
5 36
|
sylbi |
|- ( E. x e. A ph -> E. y ( y C_ A /\ E. x e. y ph ) ) |