Step |
Hyp |
Ref |
Expression |
1 |
|
extwwlkfab.v |
|- V = ( Vtx ` G ) |
2 |
|
extwwlkfab.c |
|- C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } ) |
3 |
|
extwwlkfab.f |
|- F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) |
4 |
|
uzuzle23 |
|- ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) ) |
5 |
2
|
2clwwlk |
|- ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) |
6 |
4 5
|
sylan2 |
|- ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) |
7 |
6
|
3adant1 |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } ) |
8 |
|
clwwlknon |
|- ( X ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } |
9 |
8
|
rabeqi |
|- { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } = { w e. { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } | ( w ` ( N - 2 ) ) = X } |
10 |
|
rabrab |
|- { w e. { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } | ( w ` ( N - 2 ) ) = X } = { w e. ( N ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) } |
11 |
|
simpll3 |
|- ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> N e. ( ZZ>= ` 3 ) ) |
12 |
|
simplr |
|- ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> w e. ( N ClWWalksN G ) ) |
13 |
|
simpr |
|- ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> ( w ` ( N - 2 ) ) = X ) |
14 |
|
simpl |
|- ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> ( w ` 0 ) = X ) |
15 |
14
|
eqcomd |
|- ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> X = ( w ` 0 ) ) |
16 |
13 15
|
eqtrd |
|- ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> ( w ` ( N - 2 ) ) = ( w ` 0 ) ) |
17 |
16
|
adantl |
|- ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w ` ( N - 2 ) ) = ( w ` 0 ) ) |
18 |
|
clwwnrepclwwn |
|- ( ( N e. ( ZZ>= ` 3 ) /\ w e. ( N ClWWalksN G ) /\ ( w ` ( N - 2 ) ) = ( w ` 0 ) ) -> ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) ) |
19 |
11 12 17 18
|
syl3anc |
|- ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) ) |
20 |
14
|
adantl |
|- ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w ` 0 ) = X ) |
21 |
19 20
|
jca |
|- ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) ) |
22 |
|
simp1 |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> G e. USGraph ) |
23 |
22
|
anim1i |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( G e. USGraph /\ w e. ( N ClWWalksN G ) ) ) |
24 |
23
|
adantr |
|- ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( G e. USGraph /\ w e. ( N ClWWalksN G ) ) ) |
25 |
|
clwwlknlbonbgr1 |
|- ( ( G e. USGraph /\ w e. ( N ClWWalksN G ) ) -> ( w ` ( N - 1 ) ) e. ( G NeighbVtx ( w ` 0 ) ) ) |
26 |
24 25
|
syl |
|- ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w ` ( N - 1 ) ) e. ( G NeighbVtx ( w ` 0 ) ) ) |
27 |
|
oveq2 |
|- ( X = ( w ` 0 ) -> ( G NeighbVtx X ) = ( G NeighbVtx ( w ` 0 ) ) ) |
28 |
27
|
eqcoms |
|- ( ( w ` 0 ) = X -> ( G NeighbVtx X ) = ( G NeighbVtx ( w ` 0 ) ) ) |
29 |
28
|
adantr |
|- ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> ( G NeighbVtx X ) = ( G NeighbVtx ( w ` 0 ) ) ) |
30 |
29
|
adantl |
|- ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( G NeighbVtx X ) = ( G NeighbVtx ( w ` 0 ) ) ) |
31 |
26 30
|
eleqtrrd |
|- ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) ) |
32 |
13
|
adantl |
|- ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w ` ( N - 2 ) ) = X ) |
33 |
21 31 32
|
3jca |
|- ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) |
34 |
33
|
ex |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) ) |
35 |
|
simpr |
|- ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) -> ( w ` 0 ) = X ) |
36 |
35
|
anim1i |
|- ( ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) = X ) -> ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) |
37 |
36
|
3adant2 |
|- ( ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) -> ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) |
38 |
34 37
|
impbid1 |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) ) |
39 |
|
2clwwlklem |
|- ( ( w e. ( N ClWWalksN G ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( w prefix ( N - 2 ) ) ` 0 ) = ( w ` 0 ) ) |
40 |
39
|
3ad2antr3 |
|- ( ( w e. ( N ClWWalksN G ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( w prefix ( N - 2 ) ) ` 0 ) = ( w ` 0 ) ) |
41 |
40
|
ancoms |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( w prefix ( N - 2 ) ) ` 0 ) = ( w ` 0 ) ) |
42 |
41
|
eqcomd |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( w ` 0 ) = ( ( w prefix ( N - 2 ) ) ` 0 ) ) |
43 |
42
|
eqeq1d |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( w ` 0 ) = X <-> ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) ) |
44 |
43
|
anbi2d |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) <-> ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) ) ) |
45 |
44
|
3anbi1d |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) ) |
46 |
3
|
eleq2i |
|- ( ( w prefix ( N - 2 ) ) e. F <-> ( w prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) ) |
47 |
|
isclwwlknon |
|- ( ( w prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) ) |
48 |
47
|
a1i |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( w prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) ) ) |
49 |
46 48
|
syl5bb |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( w prefix ( N - 2 ) ) e. F <-> ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) ) ) |
50 |
49
|
3anbi1d |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) ) |
51 |
50
|
bicomd |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) ) |
52 |
51
|
adantr |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) ) |
53 |
38 45 52
|
3bitrd |
|- ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) ) |
54 |
53
|
rabbidva |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> { w e. ( N ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) } = { w e. ( N ClWWalksN G ) | ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) } ) |
55 |
10 54
|
eqtrid |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> { w e. { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } | ( w ` ( N - 2 ) ) = X } = { w e. ( N ClWWalksN G ) | ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) } ) |
56 |
9 55
|
eqtrid |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } = { w e. ( N ClWWalksN G ) | ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) } ) |
57 |
7 56
|
eqtrd |
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X C N ) = { w e. ( N ClWWalksN G ) | ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) } ) |