Metamath Proof Explorer


Theorem extwwlkfab

Description: The set ( X C N ) of double loops of length N on vertex X can be constructed from the set F of closed walks on X with length smaller by 2 than the fixed length by appending a neighbor of the last vertex and afterwards the last vertex (which is the first vertex) itself ("walking forth and back" from the last vertex). 3 <_ N is required since for N = 2 : F = ( X ( ClWWalksNOnG ) 0 ) = (/) (see clwwlk0on0 stating that a closed walk of length 0 is not represented as word), which would result in an empty set on the right hand side, but ( X C N ) needs not be empty, see 2clwwlk2 . (Contributed by Alexander van der Vekens, 18-Sep-2018) (Revised by AV, 29-May-2021) (Revised by AV, 31-Oct-2022)

Ref Expression
Hypotheses extwwlkfab.v
|- V = ( Vtx ` G )
extwwlkfab.c
|- C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } )
extwwlkfab.f
|- F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) )
Assertion extwwlkfab
|- ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X C N ) = { w e. ( N ClWWalksN G ) | ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) } )

Proof

Step Hyp Ref Expression
1 extwwlkfab.v
 |-  V = ( Vtx ` G )
2 extwwlkfab.c
 |-  C = ( v e. V , n e. ( ZZ>= ` 2 ) |-> { w e. ( v ( ClWWalksNOn ` G ) n ) | ( w ` ( n - 2 ) ) = v } )
3 extwwlkfab.f
 |-  F = ( X ( ClWWalksNOn ` G ) ( N - 2 ) )
4 uzuzle23
 |-  ( N e. ( ZZ>= ` 3 ) -> N e. ( ZZ>= ` 2 ) )
5 2 2clwwlk
 |-  ( ( X e. V /\ N e. ( ZZ>= ` 2 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } )
6 4 5 sylan2
 |-  ( ( X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } )
7 6 3adant1
 |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X C N ) = { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } )
8 clwwlknon
 |-  ( X ( ClWWalksNOn ` G ) N ) = { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X }
9 8 rabeqi
 |-  { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } = { w e. { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } | ( w ` ( N - 2 ) ) = X }
10 rabrab
 |-  { w e. { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } | ( w ` ( N - 2 ) ) = X } = { w e. ( N ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) }
11 simpll3
 |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> N e. ( ZZ>= ` 3 ) )
12 simplr
 |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> w e. ( N ClWWalksN G ) )
13 simpr
 |-  ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> ( w ` ( N - 2 ) ) = X )
14 simpl
 |-  ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> ( w ` 0 ) = X )
15 14 eqcomd
 |-  ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> X = ( w ` 0 ) )
16 13 15 eqtrd
 |-  ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> ( w ` ( N - 2 ) ) = ( w ` 0 ) )
17 16 adantl
 |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w ` ( N - 2 ) ) = ( w ` 0 ) )
18 clwwnrepclwwn
 |-  ( ( N e. ( ZZ>= ` 3 ) /\ w e. ( N ClWWalksN G ) /\ ( w ` ( N - 2 ) ) = ( w ` 0 ) ) -> ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) )
19 11 12 17 18 syl3anc
 |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) )
20 14 adantl
 |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w ` 0 ) = X )
21 19 20 jca
 |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) )
22 simp1
 |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> G e. USGraph )
23 22 anim1i
 |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( G e. USGraph /\ w e. ( N ClWWalksN G ) ) )
24 23 adantr
 |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( G e. USGraph /\ w e. ( N ClWWalksN G ) ) )
25 clwwlknlbonbgr1
 |-  ( ( G e. USGraph /\ w e. ( N ClWWalksN G ) ) -> ( w ` ( N - 1 ) ) e. ( G NeighbVtx ( w ` 0 ) ) )
26 24 25 syl
 |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w ` ( N - 1 ) ) e. ( G NeighbVtx ( w ` 0 ) ) )
27 oveq2
 |-  ( X = ( w ` 0 ) -> ( G NeighbVtx X ) = ( G NeighbVtx ( w ` 0 ) ) )
28 27 eqcoms
 |-  ( ( w ` 0 ) = X -> ( G NeighbVtx X ) = ( G NeighbVtx ( w ` 0 ) ) )
29 28 adantr
 |-  ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> ( G NeighbVtx X ) = ( G NeighbVtx ( w ` 0 ) ) )
30 29 adantl
 |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( G NeighbVtx X ) = ( G NeighbVtx ( w ` 0 ) ) )
31 26 30 eleqtrrd
 |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) )
32 13 adantl
 |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( w ` ( N - 2 ) ) = X )
33 21 31 32 3jca
 |-  ( ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) /\ ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) ) -> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) )
34 33 ex
 |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) -> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) )
35 simpr
 |-  ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) -> ( w ` 0 ) = X )
36 35 anim1i
 |-  ( ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 2 ) ) = X ) -> ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) )
37 36 3adant2
 |-  ( ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) -> ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) )
38 34 37 impbid1
 |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) )
39 2clwwlklem
 |-  ( ( w e. ( N ClWWalksN G ) /\ N e. ( ZZ>= ` 3 ) ) -> ( ( w prefix ( N - 2 ) ) ` 0 ) = ( w ` 0 ) )
40 39 3ad2antr3
 |-  ( ( w e. ( N ClWWalksN G ) /\ ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) ) -> ( ( w prefix ( N - 2 ) ) ` 0 ) = ( w ` 0 ) )
41 40 ancoms
 |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( w prefix ( N - 2 ) ) ` 0 ) = ( w ` 0 ) )
42 41 eqcomd
 |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( w ` 0 ) = ( ( w prefix ( N - 2 ) ) ` 0 ) )
43 42 eqeq1d
 |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( w ` 0 ) = X <-> ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) )
44 43 anbi2d
 |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) <-> ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) ) )
45 44 3anbi1d
 |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( w ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) )
46 3 eleq2i
 |-  ( ( w prefix ( N - 2 ) ) e. F <-> ( w prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) )
47 isclwwlknon
 |-  ( ( w prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) )
48 47 a1i
 |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( w prefix ( N - 2 ) ) e. ( X ( ClWWalksNOn ` G ) ( N - 2 ) ) <-> ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) ) )
49 46 48 syl5bb
 |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( w prefix ( N - 2 ) ) e. F <-> ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) ) )
50 49 3anbi1d
 |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) )
51 50 bicomd
 |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) )
52 51 adantr
 |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( ( w prefix ( N - 2 ) ) e. ( ( N - 2 ) ClWWalksN G ) /\ ( ( w prefix ( N - 2 ) ) ` 0 ) = X ) /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) )
53 38 45 52 3bitrd
 |-  ( ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) /\ w e. ( N ClWWalksN G ) ) -> ( ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) <-> ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) ) )
54 53 rabbidva
 |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> { w e. ( N ClWWalksN G ) | ( ( w ` 0 ) = X /\ ( w ` ( N - 2 ) ) = X ) } = { w e. ( N ClWWalksN G ) | ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) } )
55 10 54 eqtrid
 |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> { w e. { w e. ( N ClWWalksN G ) | ( w ` 0 ) = X } | ( w ` ( N - 2 ) ) = X } = { w e. ( N ClWWalksN G ) | ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) } )
56 9 55 eqtrid
 |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> { w e. ( X ( ClWWalksNOn ` G ) N ) | ( w ` ( N - 2 ) ) = X } = { w e. ( N ClWWalksN G ) | ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) } )
57 7 56 eqtrd
 |-  ( ( G e. USGraph /\ X e. V /\ N e. ( ZZ>= ` 3 ) ) -> ( X C N ) = { w e. ( N ClWWalksN G ) | ( ( w prefix ( N - 2 ) ) e. F /\ ( w ` ( N - 1 ) ) e. ( G NeighbVtx X ) /\ ( w ` ( N - 2 ) ) = X ) } )