Metamath Proof Explorer


Theorem f0

Description: The empty function. (Contributed by NM, 14-Aug-1999)

Ref Expression
Assertion f0
|- (/) : (/) --> A

Proof

Step Hyp Ref Expression
1 eqid
 |-  (/) = (/)
2 fn0
 |-  ( (/) Fn (/) <-> (/) = (/) )
3 1 2 mpbir
 |-  (/) Fn (/)
4 rn0
 |-  ran (/) = (/)
5 0ss
 |-  (/) C_ A
6 4 5 eqsstri
 |-  ran (/) C_ A
7 df-f
 |-  ( (/) : (/) --> A <-> ( (/) Fn (/) /\ ran (/) C_ A ) )
8 3 6 7 mpbir2an
 |-  (/) : (/) --> A