| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffun |
|- ( F : A --> (/) -> Fun F ) |
| 2 |
|
frn |
|- ( F : A --> (/) -> ran F C_ (/) ) |
| 3 |
|
ss0 |
|- ( ran F C_ (/) -> ran F = (/) ) |
| 4 |
2 3
|
syl |
|- ( F : A --> (/) -> ran F = (/) ) |
| 5 |
|
dm0rn0 |
|- ( dom F = (/) <-> ran F = (/) ) |
| 6 |
4 5
|
sylibr |
|- ( F : A --> (/) -> dom F = (/) ) |
| 7 |
|
df-fn |
|- ( F Fn (/) <-> ( Fun F /\ dom F = (/) ) ) |
| 8 |
1 6 7
|
sylanbrc |
|- ( F : A --> (/) -> F Fn (/) ) |
| 9 |
|
fn0 |
|- ( F Fn (/) <-> F = (/) ) |
| 10 |
8 9
|
sylib |
|- ( F : A --> (/) -> F = (/) ) |
| 11 |
|
fdm |
|- ( F : A --> (/) -> dom F = A ) |
| 12 |
11 6
|
eqtr3d |
|- ( F : A --> (/) -> A = (/) ) |
| 13 |
10 12
|
jca |
|- ( F : A --> (/) -> ( F = (/) /\ A = (/) ) ) |
| 14 |
|
f0 |
|- (/) : (/) --> (/) |
| 15 |
|
feq1 |
|- ( F = (/) -> ( F : A --> (/) <-> (/) : A --> (/) ) ) |
| 16 |
|
feq2 |
|- ( A = (/) -> ( (/) : A --> (/) <-> (/) : (/) --> (/) ) ) |
| 17 |
15 16
|
sylan9bb |
|- ( ( F = (/) /\ A = (/) ) -> ( F : A --> (/) <-> (/) : (/) --> (/) ) ) |
| 18 |
14 17
|
mpbiri |
|- ( ( F = (/) /\ A = (/) ) -> F : A --> (/) ) |
| 19 |
13 18
|
impbii |
|- ( F : A --> (/) <-> ( F = (/) /\ A = (/) ) ) |