Metamath Proof Explorer


Theorem f0bi

Description: A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018)

Ref Expression
Assertion f0bi
|- ( F : (/) --> X <-> F = (/) )

Proof

Step Hyp Ref Expression
1 ffn
 |-  ( F : (/) --> X -> F Fn (/) )
2 fn0
 |-  ( F Fn (/) <-> F = (/) )
3 1 2 sylib
 |-  ( F : (/) --> X -> F = (/) )
4 f0
 |-  (/) : (/) --> X
5 feq1
 |-  ( F = (/) -> ( F : (/) --> X <-> (/) : (/) --> X ) )
6 4 5 mpbiri
 |-  ( F = (/) -> F : (/) --> X )
7 3 6 impbii
 |-  ( F : (/) --> X <-> F = (/) )