Metamath Proof Explorer


Theorem f0cli

Description: Unconditional closure of a function when the range includes the empty set. (Contributed by Mario Carneiro, 12-Sep-2013)

Ref Expression
Hypotheses f0cl.1
|- F : A --> B
f0cl.2
|- (/) e. B
Assertion f0cli
|- ( F ` C ) e. B

Proof

Step Hyp Ref Expression
1 f0cl.1
 |-  F : A --> B
2 f0cl.2
 |-  (/) e. B
3 1 ffvelrni
 |-  ( C e. A -> ( F ` C ) e. B )
4 1 fdmi
 |-  dom F = A
5 4 eleq2i
 |-  ( C e. dom F <-> C e. A )
6 ndmfv
 |-  ( -. C e. dom F -> ( F ` C ) = (/) )
7 6 2 eqeltrdi
 |-  ( -. C e. dom F -> ( F ` C ) e. B )
8 5 7 sylnbir
 |-  ( -. C e. A -> ( F ` C ) e. B )
9 3 8 pm2.61i
 |-  ( F ` C ) e. B