| Step |
Hyp |
Ref |
Expression |
| 1 |
|
feq2 |
|- ( X = (/) -> ( F : X --> Y <-> F : (/) --> Y ) ) |
| 2 |
|
f0bi |
|- ( F : (/) --> Y <-> F = (/) ) |
| 3 |
2
|
biimpi |
|- ( F : (/) --> Y -> F = (/) ) |
| 4 |
1 3
|
biimtrdi |
|- ( X = (/) -> ( F : X --> Y -> F = (/) ) ) |
| 5 |
4
|
com12 |
|- ( F : X --> Y -> ( X = (/) -> F = (/) ) ) |
| 6 |
|
feq1 |
|- ( F = (/) -> ( F : X --> Y <-> (/) : X --> Y ) ) |
| 7 |
|
fdm |
|- ( (/) : X --> Y -> dom (/) = X ) |
| 8 |
|
dm0 |
|- dom (/) = (/) |
| 9 |
7 8
|
eqtr3di |
|- ( (/) : X --> Y -> X = (/) ) |
| 10 |
6 9
|
biimtrdi |
|- ( F = (/) -> ( F : X --> Y -> X = (/) ) ) |
| 11 |
10
|
com12 |
|- ( F : X --> Y -> ( F = (/) -> X = (/) ) ) |
| 12 |
5 11
|
impbid |
|- ( F : X --> Y -> ( X = (/) <-> F = (/) ) ) |