| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fdm |  |-  ( E : X --> Y -> dom E = X ) | 
						
							| 2 |  | frn |  |-  ( E : X --> Y -> ran E C_ Y ) | 
						
							| 3 |  | ralnex |  |-  ( A. y e. Y -. y e. ran E <-> -. E. y e. Y y e. ran E ) | 
						
							| 4 |  | disj |  |-  ( ( Y i^i ran E ) = (/) <-> A. y e. Y -. y e. ran E ) | 
						
							| 5 |  | dfss2 |  |-  ( ran E C_ Y <-> ( ran E i^i Y ) = ran E ) | 
						
							| 6 |  | incom |  |-  ( ran E i^i Y ) = ( Y i^i ran E ) | 
						
							| 7 | 6 | eqeq1i |  |-  ( ( ran E i^i Y ) = ran E <-> ( Y i^i ran E ) = ran E ) | 
						
							| 8 |  | eqtr2 |  |-  ( ( ( Y i^i ran E ) = ran E /\ ( Y i^i ran E ) = (/) ) -> ran E = (/) ) | 
						
							| 9 | 8 | ex |  |-  ( ( Y i^i ran E ) = ran E -> ( ( Y i^i ran E ) = (/) -> ran E = (/) ) ) | 
						
							| 10 | 7 9 | sylbi |  |-  ( ( ran E i^i Y ) = ran E -> ( ( Y i^i ran E ) = (/) -> ran E = (/) ) ) | 
						
							| 11 | 5 10 | sylbi |  |-  ( ran E C_ Y -> ( ( Y i^i ran E ) = (/) -> ran E = (/) ) ) | 
						
							| 12 | 4 11 | biimtrrid |  |-  ( ran E C_ Y -> ( A. y e. Y -. y e. ran E -> ran E = (/) ) ) | 
						
							| 13 | 3 12 | biimtrrid |  |-  ( ran E C_ Y -> ( -. E. y e. Y y e. ran E -> ran E = (/) ) ) | 
						
							| 14 | 2 13 | syl |  |-  ( E : X --> Y -> ( -. E. y e. Y y e. ran E -> ran E = (/) ) ) | 
						
							| 15 | 14 | imp |  |-  ( ( E : X --> Y /\ -. E. y e. Y y e. ran E ) -> ran E = (/) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( dom E = X /\ ( E : X --> Y /\ -. E. y e. Y y e. ran E ) ) -> ran E = (/) ) | 
						
							| 17 |  | dm0rn0 |  |-  ( dom E = (/) <-> ran E = (/) ) | 
						
							| 18 | 16 17 | sylibr |  |-  ( ( dom E = X /\ ( E : X --> Y /\ -. E. y e. Y y e. ran E ) ) -> dom E = (/) ) | 
						
							| 19 |  | eqeq1 |  |-  ( X = dom E -> ( X = (/) <-> dom E = (/) ) ) | 
						
							| 20 | 19 | eqcoms |  |-  ( dom E = X -> ( X = (/) <-> dom E = (/) ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( dom E = X /\ ( E : X --> Y /\ -. E. y e. Y y e. ran E ) ) -> ( X = (/) <-> dom E = (/) ) ) | 
						
							| 22 | 18 21 | mpbird |  |-  ( ( dom E = X /\ ( E : X --> Y /\ -. E. y e. Y y e. ran E ) ) -> X = (/) ) | 
						
							| 23 | 22 | exp32 |  |-  ( dom E = X -> ( E : X --> Y -> ( -. E. y e. Y y e. ran E -> X = (/) ) ) ) | 
						
							| 24 | 1 23 | mpcom |  |-  ( E : X --> Y -> ( -. E. y e. Y y e. ran E -> X = (/) ) ) | 
						
							| 25 | 24 | imp |  |-  ( ( E : X --> Y /\ -. E. y e. Y y e. ran E ) -> X = (/) ) |