| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fdm |
|- ( E : X --> Y -> dom E = X ) |
| 2 |
|
frn |
|- ( E : X --> Y -> ran E C_ Y ) |
| 3 |
|
ralnex |
|- ( A. y e. Y -. y e. ran E <-> -. E. y e. Y y e. ran E ) |
| 4 |
|
disj |
|- ( ( Y i^i ran E ) = (/) <-> A. y e. Y -. y e. ran E ) |
| 5 |
|
dfss2 |
|- ( ran E C_ Y <-> ( ran E i^i Y ) = ran E ) |
| 6 |
|
incom |
|- ( ran E i^i Y ) = ( Y i^i ran E ) |
| 7 |
6
|
eqeq1i |
|- ( ( ran E i^i Y ) = ran E <-> ( Y i^i ran E ) = ran E ) |
| 8 |
|
eqtr2 |
|- ( ( ( Y i^i ran E ) = ran E /\ ( Y i^i ran E ) = (/) ) -> ran E = (/) ) |
| 9 |
8
|
ex |
|- ( ( Y i^i ran E ) = ran E -> ( ( Y i^i ran E ) = (/) -> ran E = (/) ) ) |
| 10 |
7 9
|
sylbi |
|- ( ( ran E i^i Y ) = ran E -> ( ( Y i^i ran E ) = (/) -> ran E = (/) ) ) |
| 11 |
5 10
|
sylbi |
|- ( ran E C_ Y -> ( ( Y i^i ran E ) = (/) -> ran E = (/) ) ) |
| 12 |
4 11
|
biimtrrid |
|- ( ran E C_ Y -> ( A. y e. Y -. y e. ran E -> ran E = (/) ) ) |
| 13 |
3 12
|
biimtrrid |
|- ( ran E C_ Y -> ( -. E. y e. Y y e. ran E -> ran E = (/) ) ) |
| 14 |
2 13
|
syl |
|- ( E : X --> Y -> ( -. E. y e. Y y e. ran E -> ran E = (/) ) ) |
| 15 |
14
|
imp |
|- ( ( E : X --> Y /\ -. E. y e. Y y e. ran E ) -> ran E = (/) ) |
| 16 |
15
|
adantl |
|- ( ( dom E = X /\ ( E : X --> Y /\ -. E. y e. Y y e. ran E ) ) -> ran E = (/) ) |
| 17 |
|
dm0rn0 |
|- ( dom E = (/) <-> ran E = (/) ) |
| 18 |
16 17
|
sylibr |
|- ( ( dom E = X /\ ( E : X --> Y /\ -. E. y e. Y y e. ran E ) ) -> dom E = (/) ) |
| 19 |
|
eqeq1 |
|- ( X = dom E -> ( X = (/) <-> dom E = (/) ) ) |
| 20 |
19
|
eqcoms |
|- ( dom E = X -> ( X = (/) <-> dom E = (/) ) ) |
| 21 |
20
|
adantr |
|- ( ( dom E = X /\ ( E : X --> Y /\ -. E. y e. Y y e. ran E ) ) -> ( X = (/) <-> dom E = (/) ) ) |
| 22 |
18 21
|
mpbird |
|- ( ( dom E = X /\ ( E : X --> Y /\ -. E. y e. Y y e. ran E ) ) -> X = (/) ) |
| 23 |
22
|
exp32 |
|- ( dom E = X -> ( E : X --> Y -> ( -. E. y e. Y y e. ran E -> X = (/) ) ) ) |
| 24 |
1 23
|
mpcom |
|- ( E : X --> Y -> ( -. E. y e. Y y e. ran E -> X = (/) ) ) |
| 25 |
24
|
imp |
|- ( ( E : X --> Y /\ -. E. y e. Y y e. ran E ) -> X = (/) ) |