| Step |
Hyp |
Ref |
Expression |
| 1 |
|
feq2 |
|- ( A = (/) -> ( F : A --> B <-> F : (/) --> B ) ) |
| 2 |
1
|
biimpa |
|- ( ( A = (/) /\ F : A --> B ) -> F : (/) --> B ) |
| 3 |
|
f0bi |
|- ( F : (/) --> B <-> F = (/) ) |
| 4 |
|
f10 |
|- (/) : (/) -1-1-> B |
| 5 |
|
f1eq1 |
|- ( F = (/) -> ( F : (/) -1-1-> B <-> (/) : (/) -1-1-> B ) ) |
| 6 |
4 5
|
mpbiri |
|- ( F = (/) -> F : (/) -1-1-> B ) |
| 7 |
3 6
|
sylbi |
|- ( F : (/) --> B -> F : (/) -1-1-> B ) |
| 8 |
2 7
|
syl |
|- ( ( A = (/) /\ F : A --> B ) -> F : (/) -1-1-> B ) |
| 9 |
|
f1eq2 |
|- ( A = (/) -> ( F : A -1-1-> B <-> F : (/) -1-1-> B ) ) |
| 10 |
9
|
adantr |
|- ( ( A = (/) /\ F : A --> B ) -> ( F : A -1-1-> B <-> F : (/) -1-1-> B ) ) |
| 11 |
8 10
|
mpbird |
|- ( ( A = (/) /\ F : A --> B ) -> F : A -1-1-> B ) |