Description: The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | f10d.f | |- ( ph -> F = (/) ) |
|
| Assertion | f10d | |- ( ph -> F : dom F -1-1-> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f10d.f | |- ( ph -> F = (/) ) |
|
| 2 | f10 | |- (/) : (/) -1-1-> A |
|
| 3 | dm0 | |- dom (/) = (/) |
|
| 4 | f1eq2 | |- ( dom (/) = (/) -> ( (/) : dom (/) -1-1-> A <-> (/) : (/) -1-1-> A ) ) |
|
| 5 | 3 4 | ax-mp | |- ( (/) : dom (/) -1-1-> A <-> (/) : (/) -1-1-> A ) |
| 6 | 2 5 | mpbir | |- (/) : dom (/) -1-1-> A |
| 7 | 1 | dmeqd | |- ( ph -> dom F = dom (/) ) |
| 8 | eqidd | |- ( ph -> A = A ) |
|
| 9 | 1 7 8 | f1eq123d | |- ( ph -> ( F : dom F -1-1-> A <-> (/) : dom (/) -1-1-> A ) ) |
| 10 | 6 9 | mpbiri | |- ( ph -> F : dom F -1-1-> A ) |