| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f13idfv.a |  |-  A = ( 0 ... 2 ) | 
						
							| 2 |  | 0z |  |-  0 e. ZZ | 
						
							| 3 |  | 1z |  |-  1 e. ZZ | 
						
							| 4 |  | 2z |  |-  2 e. ZZ | 
						
							| 5 | 2 3 4 | 3pm3.2i |  |-  ( 0 e. ZZ /\ 1 e. ZZ /\ 2 e. ZZ ) | 
						
							| 6 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 7 |  | 0ne2 |  |-  0 =/= 2 | 
						
							| 8 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 9 | 6 7 8 | 3pm3.2i |  |-  ( 0 =/= 1 /\ 0 =/= 2 /\ 1 =/= 2 ) | 
						
							| 10 |  | fz0tp |  |-  ( 0 ... 2 ) = { 0 , 1 , 2 } | 
						
							| 11 | 1 10 | eqtri |  |-  A = { 0 , 1 , 2 } | 
						
							| 12 | 11 | f13dfv |  |-  ( ( ( 0 e. ZZ /\ 1 e. ZZ /\ 2 e. ZZ ) /\ ( 0 =/= 1 /\ 0 =/= 2 /\ 1 =/= 2 ) ) -> ( F : A -1-1-> B <-> ( F : A --> B /\ ( ( F ` 0 ) =/= ( F ` 1 ) /\ ( F ` 0 ) =/= ( F ` 2 ) /\ ( F ` 1 ) =/= ( F ` 2 ) ) ) ) ) | 
						
							| 13 | 5 9 12 | mp2an |  |-  ( F : A -1-1-> B <-> ( F : A --> B /\ ( ( F ` 0 ) =/= ( F ` 1 ) /\ ( F ` 0 ) =/= ( F ` 2 ) /\ ( F ` 1 ) =/= ( F ` 2 ) ) ) ) |