| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-f1 |  |-  ( `' `' A : dom A -1-1-> _V <-> ( `' `' A : dom A --> _V /\ Fun `' `' `' A ) ) | 
						
							| 2 |  | dffn2 |  |-  ( `' `' A Fn dom A <-> `' `' A : dom A --> _V ) | 
						
							| 3 |  | dmcnvcnv |  |-  dom `' `' A = dom A | 
						
							| 4 |  | df-fn |  |-  ( `' `' A Fn dom A <-> ( Fun `' `' A /\ dom `' `' A = dom A ) ) | 
						
							| 5 | 3 4 | mpbiran2 |  |-  ( `' `' A Fn dom A <-> Fun `' `' A ) | 
						
							| 6 | 2 5 | bitr3i |  |-  ( `' `' A : dom A --> _V <-> Fun `' `' A ) | 
						
							| 7 |  | relcnv |  |-  Rel `' A | 
						
							| 8 |  | dfrel2 |  |-  ( Rel `' A <-> `' `' `' A = `' A ) | 
						
							| 9 | 7 8 | mpbi |  |-  `' `' `' A = `' A | 
						
							| 10 | 9 | funeqi |  |-  ( Fun `' `' `' A <-> Fun `' A ) | 
						
							| 11 | 6 10 | anbi12ci |  |-  ( ( `' `' A : dom A --> _V /\ Fun `' `' `' A ) <-> ( Fun `' A /\ Fun `' `' A ) ) | 
						
							| 12 | 1 11 | bitri |  |-  ( `' `' A : dom A -1-1-> _V <-> ( Fun `' A /\ Fun `' `' A ) ) |