Step |
Hyp |
Ref |
Expression |
1 |
|
df-f1 |
|- ( `' `' A : dom A -1-1-> _V <-> ( `' `' A : dom A --> _V /\ Fun `' `' `' A ) ) |
2 |
|
dffn2 |
|- ( `' `' A Fn dom A <-> `' `' A : dom A --> _V ) |
3 |
|
dmcnvcnv |
|- dom `' `' A = dom A |
4 |
|
df-fn |
|- ( `' `' A Fn dom A <-> ( Fun `' `' A /\ dom `' `' A = dom A ) ) |
5 |
3 4
|
mpbiran2 |
|- ( `' `' A Fn dom A <-> Fun `' `' A ) |
6 |
2 5
|
bitr3i |
|- ( `' `' A : dom A --> _V <-> Fun `' `' A ) |
7 |
|
relcnv |
|- Rel `' A |
8 |
|
dfrel2 |
|- ( Rel `' A <-> `' `' `' A = `' A ) |
9 |
7 8
|
mpbi |
|- `' `' `' A = `' A |
10 |
9
|
funeqi |
|- ( Fun `' `' `' A <-> Fun `' A ) |
11 |
6 10
|
anbi12ci |
|- ( ( `' `' A : dom A --> _V /\ Fun `' `' `' A ) <-> ( Fun `' A /\ Fun `' `' A ) ) |
12 |
1 11
|
bitri |
|- ( `' `' A : dom A -1-1-> _V <-> ( Fun `' A /\ Fun `' `' A ) ) |