| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-f1 |
|- ( F : C -1-1-> D <-> ( F : C --> D /\ Fun `' F ) ) |
| 2 |
|
df-f1 |
|- ( G : A -1-1-> B <-> ( G : A --> B /\ Fun `' G ) ) |
| 3 |
|
ffun |
|- ( G : A --> B -> Fun G ) |
| 4 |
|
fcof |
|- ( ( F : C --> D /\ Fun G ) -> ( F o. G ) : ( `' G " C ) --> D ) |
| 5 |
3 4
|
sylan2 |
|- ( ( F : C --> D /\ G : A --> B ) -> ( F o. G ) : ( `' G " C ) --> D ) |
| 6 |
|
funco |
|- ( ( Fun `' G /\ Fun `' F ) -> Fun ( `' G o. `' F ) ) |
| 7 |
|
cnvco |
|- `' ( F o. G ) = ( `' G o. `' F ) |
| 8 |
7
|
funeqi |
|- ( Fun `' ( F o. G ) <-> Fun ( `' G o. `' F ) ) |
| 9 |
6 8
|
sylibr |
|- ( ( Fun `' G /\ Fun `' F ) -> Fun `' ( F o. G ) ) |
| 10 |
9
|
ancoms |
|- ( ( Fun `' F /\ Fun `' G ) -> Fun `' ( F o. G ) ) |
| 11 |
5 10
|
anim12i |
|- ( ( ( F : C --> D /\ G : A --> B ) /\ ( Fun `' F /\ Fun `' G ) ) -> ( ( F o. G ) : ( `' G " C ) --> D /\ Fun `' ( F o. G ) ) ) |
| 12 |
11
|
an4s |
|- ( ( ( F : C --> D /\ Fun `' F ) /\ ( G : A --> B /\ Fun `' G ) ) -> ( ( F o. G ) : ( `' G " C ) --> D /\ Fun `' ( F o. G ) ) ) |
| 13 |
1 2 12
|
syl2anb |
|- ( ( F : C -1-1-> D /\ G : A -1-1-> B ) -> ( ( F o. G ) : ( `' G " C ) --> D /\ Fun `' ( F o. G ) ) ) |
| 14 |
|
df-f1 |
|- ( ( F o. G ) : ( `' G " C ) -1-1-> D <-> ( ( F o. G ) : ( `' G " C ) --> D /\ Fun `' ( F o. G ) ) ) |
| 15 |
13 14
|
sylibr |
|- ( ( F : C -1-1-> D /\ G : A -1-1-> B ) -> ( F o. G ) : ( `' G " C ) -1-1-> D ) |