Step |
Hyp |
Ref |
Expression |
1 |
|
f1f |
|- ( F : A -1-1-> B -> F : A --> B ) |
2 |
1
|
frnd |
|- ( F : A -1-1-> B -> ran F C_ B ) |
3 |
|
ssexg |
|- ( ( ran F C_ B /\ B e. C ) -> ran F e. _V ) |
4 |
2 3
|
sylan |
|- ( ( F : A -1-1-> B /\ B e. C ) -> ran F e. _V ) |
5 |
4
|
ex |
|- ( F : A -1-1-> B -> ( B e. C -> ran F e. _V ) ) |
6 |
|
f1cnv |
|- ( F : A -1-1-> B -> `' F : ran F -1-1-onto-> A ) |
7 |
|
f1ofo |
|- ( `' F : ran F -1-1-onto-> A -> `' F : ran F -onto-> A ) |
8 |
6 7
|
syl |
|- ( F : A -1-1-> B -> `' F : ran F -onto-> A ) |
9 |
|
fornex |
|- ( ran F e. _V -> ( `' F : ran F -onto-> A -> A e. _V ) ) |
10 |
5 8 9
|
syl6ci |
|- ( F : A -1-1-> B -> ( B e. C -> A e. _V ) ) |
11 |
10
|
imp |
|- ( ( F : A -1-1-> B /\ B e. C ) -> A e. _V ) |