Step |
Hyp |
Ref |
Expression |
1 |
|
rnfi |
|- ( F e. Fin -> ran F e. Fin ) |
2 |
|
simpr |
|- ( ( ( A e. V /\ F : A -1-1-> B ) /\ ran F e. Fin ) -> ran F e. Fin ) |
3 |
|
f1dm |
|- ( F : A -1-1-> B -> dom F = A ) |
4 |
|
f1f1orn |
|- ( F : A -1-1-> B -> F : A -1-1-onto-> ran F ) |
5 |
|
eleq1 |
|- ( A = dom F -> ( A e. V <-> dom F e. V ) ) |
6 |
|
f1oeq2 |
|- ( A = dom F -> ( F : A -1-1-onto-> ran F <-> F : dom F -1-1-onto-> ran F ) ) |
7 |
5 6
|
anbi12d |
|- ( A = dom F -> ( ( A e. V /\ F : A -1-1-onto-> ran F ) <-> ( dom F e. V /\ F : dom F -1-1-onto-> ran F ) ) ) |
8 |
7
|
eqcoms |
|- ( dom F = A -> ( ( A e. V /\ F : A -1-1-onto-> ran F ) <-> ( dom F e. V /\ F : dom F -1-1-onto-> ran F ) ) ) |
9 |
8
|
biimpd |
|- ( dom F = A -> ( ( A e. V /\ F : A -1-1-onto-> ran F ) -> ( dom F e. V /\ F : dom F -1-1-onto-> ran F ) ) ) |
10 |
9
|
expcomd |
|- ( dom F = A -> ( F : A -1-1-onto-> ran F -> ( A e. V -> ( dom F e. V /\ F : dom F -1-1-onto-> ran F ) ) ) ) |
11 |
3 4 10
|
sylc |
|- ( F : A -1-1-> B -> ( A e. V -> ( dom F e. V /\ F : dom F -1-1-onto-> ran F ) ) ) |
12 |
11
|
impcom |
|- ( ( A e. V /\ F : A -1-1-> B ) -> ( dom F e. V /\ F : dom F -1-1-onto-> ran F ) ) |
13 |
12
|
adantr |
|- ( ( ( A e. V /\ F : A -1-1-> B ) /\ ran F e. Fin ) -> ( dom F e. V /\ F : dom F -1-1-onto-> ran F ) ) |
14 |
|
f1oeng |
|- ( ( dom F e. V /\ F : dom F -1-1-onto-> ran F ) -> dom F ~~ ran F ) |
15 |
13 14
|
syl |
|- ( ( ( A e. V /\ F : A -1-1-> B ) /\ ran F e. Fin ) -> dom F ~~ ran F ) |
16 |
|
enfii |
|- ( ( ran F e. Fin /\ dom F ~~ ran F ) -> dom F e. Fin ) |
17 |
2 15 16
|
syl2anc |
|- ( ( ( A e. V /\ F : A -1-1-> B ) /\ ran F e. Fin ) -> dom F e. Fin ) |
18 |
|
f1fun |
|- ( F : A -1-1-> B -> Fun F ) |
19 |
18
|
ad2antlr |
|- ( ( ( A e. V /\ F : A -1-1-> B ) /\ ran F e. Fin ) -> Fun F ) |
20 |
|
fundmfibi |
|- ( Fun F -> ( F e. Fin <-> dom F e. Fin ) ) |
21 |
19 20
|
syl |
|- ( ( ( A e. V /\ F : A -1-1-> B ) /\ ran F e. Fin ) -> ( F e. Fin <-> dom F e. Fin ) ) |
22 |
17 21
|
mpbird |
|- ( ( ( A e. V /\ F : A -1-1-> B ) /\ ran F e. Fin ) -> F e. Fin ) |
23 |
22
|
ex |
|- ( ( A e. V /\ F : A -1-1-> B ) -> ( ran F e. Fin -> F e. Fin ) ) |
24 |
1 23
|
impbid2 |
|- ( ( A e. V /\ F : A -1-1-> B ) -> ( F e. Fin <-> ran F e. Fin ) ) |