Metamath Proof Explorer


Theorem f1dom

Description: The domain of a one-to-one function is dominated by its codomain. (Contributed by NM, 19-Jun-1998)

Ref Expression
Hypothesis f1dom.1
|- B e. _V
Assertion f1dom
|- ( F : A -1-1-> B -> A ~<_ B )

Proof

Step Hyp Ref Expression
1 f1dom.1
 |-  B e. _V
2 f1domg
 |-  ( B e. _V -> ( F : A -1-1-> B -> A ~<_ B ) )
3 1 2 ax-mp
 |-  ( F : A -1-1-> B -> A ~<_ B )