| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1dom3fv3dif.v |  |-  ( ph -> ( A e. X /\ B e. Y /\ C e. Z ) ) | 
						
							| 2 |  | f1dom3fv3dif.n |  |-  ( ph -> ( A =/= B /\ A =/= C /\ B =/= C ) ) | 
						
							| 3 |  | f1dom3fv3dif.f |  |-  ( ph -> F : { A , B , C } -1-1-> R ) | 
						
							| 4 |  | f1f |  |-  ( F : { A , B , C } -1-1-> R -> F : { A , B , C } --> R ) | 
						
							| 5 |  | simpr |  |-  ( ( ph /\ F : { A , B , C } --> R ) -> F : { A , B , C } --> R ) | 
						
							| 6 |  | eqidd |  |-  ( ph -> A = A ) | 
						
							| 7 | 6 | 3mix1d |  |-  ( ph -> ( A = A \/ A = B \/ A = C ) ) | 
						
							| 8 | 1 | simp1d |  |-  ( ph -> A e. X ) | 
						
							| 9 |  | eltpg |  |-  ( A e. X -> ( A e. { A , B , C } <-> ( A = A \/ A = B \/ A = C ) ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ph -> ( A e. { A , B , C } <-> ( A = A \/ A = B \/ A = C ) ) ) | 
						
							| 11 | 7 10 | mpbird |  |-  ( ph -> A e. { A , B , C } ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ph /\ F : { A , B , C } --> R ) -> A e. { A , B , C } ) | 
						
							| 13 | 5 12 | ffvelcdmd |  |-  ( ( ph /\ F : { A , B , C } --> R ) -> ( F ` A ) e. R ) | 
						
							| 14 |  | eqidd |  |-  ( ph -> B = B ) | 
						
							| 15 | 14 | 3mix2d |  |-  ( ph -> ( B = A \/ B = B \/ B = C ) ) | 
						
							| 16 | 1 | simp2d |  |-  ( ph -> B e. Y ) | 
						
							| 17 |  | eltpg |  |-  ( B e. Y -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) | 
						
							| 19 | 15 18 | mpbird |  |-  ( ph -> B e. { A , B , C } ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ F : { A , B , C } --> R ) -> B e. { A , B , C } ) | 
						
							| 21 | 5 20 | ffvelcdmd |  |-  ( ( ph /\ F : { A , B , C } --> R ) -> ( F ` B ) e. R ) | 
						
							| 22 | 1 | simp3d |  |-  ( ph -> C e. Z ) | 
						
							| 23 |  | tpid3g |  |-  ( C e. Z -> C e. { A , B , C } ) | 
						
							| 24 | 22 23 | syl |  |-  ( ph -> C e. { A , B , C } ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ph /\ F : { A , B , C } --> R ) -> C e. { A , B , C } ) | 
						
							| 26 | 5 25 | ffvelcdmd |  |-  ( ( ph /\ F : { A , B , C } --> R ) -> ( F ` C ) e. R ) | 
						
							| 27 | 13 21 26 | 3jca |  |-  ( ( ph /\ F : { A , B , C } --> R ) -> ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ ( F ` C ) e. R ) ) | 
						
							| 28 | 27 | expcom |  |-  ( F : { A , B , C } --> R -> ( ph -> ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ ( F ` C ) e. R ) ) ) | 
						
							| 29 | 4 28 | syl |  |-  ( F : { A , B , C } -1-1-> R -> ( ph -> ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ ( F ` C ) e. R ) ) ) | 
						
							| 30 | 3 29 | mpcom |  |-  ( ph -> ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ ( F ` C ) e. R ) ) | 
						
							| 31 | 1 2 3 | f1dom3fv3dif |  |-  ( ph -> ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= ( F ` C ) /\ ( F ` B ) =/= ( F ` C ) ) ) | 
						
							| 32 |  | neeq1 |  |-  ( x = ( F ` A ) -> ( x =/= y <-> ( F ` A ) =/= y ) ) | 
						
							| 33 |  | neeq1 |  |-  ( x = ( F ` A ) -> ( x =/= z <-> ( F ` A ) =/= z ) ) | 
						
							| 34 | 32 33 | 3anbi12d |  |-  ( x = ( F ` A ) -> ( ( x =/= y /\ x =/= z /\ y =/= z ) <-> ( ( F ` A ) =/= y /\ ( F ` A ) =/= z /\ y =/= z ) ) ) | 
						
							| 35 |  | neeq2 |  |-  ( y = ( F ` B ) -> ( ( F ` A ) =/= y <-> ( F ` A ) =/= ( F ` B ) ) ) | 
						
							| 36 |  | neeq1 |  |-  ( y = ( F ` B ) -> ( y =/= z <-> ( F ` B ) =/= z ) ) | 
						
							| 37 | 35 36 | 3anbi13d |  |-  ( y = ( F ` B ) -> ( ( ( F ` A ) =/= y /\ ( F ` A ) =/= z /\ y =/= z ) <-> ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= z /\ ( F ` B ) =/= z ) ) ) | 
						
							| 38 |  | neeq2 |  |-  ( z = ( F ` C ) -> ( ( F ` A ) =/= z <-> ( F ` A ) =/= ( F ` C ) ) ) | 
						
							| 39 |  | neeq2 |  |-  ( z = ( F ` C ) -> ( ( F ` B ) =/= z <-> ( F ` B ) =/= ( F ` C ) ) ) | 
						
							| 40 | 38 39 | 3anbi23d |  |-  ( z = ( F ` C ) -> ( ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= z /\ ( F ` B ) =/= z ) <-> ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= ( F ` C ) /\ ( F ` B ) =/= ( F ` C ) ) ) ) | 
						
							| 41 | 34 37 40 | rspc3ev |  |-  ( ( ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ ( F ` C ) e. R ) /\ ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= ( F ` C ) /\ ( F ` B ) =/= ( F ` C ) ) ) -> E. x e. R E. y e. R E. z e. R ( x =/= y /\ x =/= z /\ y =/= z ) ) | 
						
							| 42 | 30 31 41 | syl2anc |  |-  ( ph -> E. x e. R E. y e. R E. z e. R ( x =/= y /\ x =/= z /\ y =/= z ) ) |