Step |
Hyp |
Ref |
Expression |
1 |
|
f1dom3fv3dif.v |
|- ( ph -> ( A e. X /\ B e. Y /\ C e. Z ) ) |
2 |
|
f1dom3fv3dif.n |
|- ( ph -> ( A =/= B /\ A =/= C /\ B =/= C ) ) |
3 |
|
f1dom3fv3dif.f |
|- ( ph -> F : { A , B , C } -1-1-> R ) |
4 |
2
|
simp1d |
|- ( ph -> A =/= B ) |
5 |
|
eqidd |
|- ( ph -> A = A ) |
6 |
5
|
3mix1d |
|- ( ph -> ( A = A \/ A = B \/ A = C ) ) |
7 |
1
|
simp1d |
|- ( ph -> A e. X ) |
8 |
|
eltpg |
|- ( A e. X -> ( A e. { A , B , C } <-> ( A = A \/ A = B \/ A = C ) ) ) |
9 |
7 8
|
syl |
|- ( ph -> ( A e. { A , B , C } <-> ( A = A \/ A = B \/ A = C ) ) ) |
10 |
6 9
|
mpbird |
|- ( ph -> A e. { A , B , C } ) |
11 |
|
eqidd |
|- ( ph -> B = B ) |
12 |
11
|
3mix2d |
|- ( ph -> ( B = A \/ B = B \/ B = C ) ) |
13 |
1
|
simp2d |
|- ( ph -> B e. Y ) |
14 |
|
eltpg |
|- ( B e. Y -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) |
15 |
13 14
|
syl |
|- ( ph -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) |
16 |
12 15
|
mpbird |
|- ( ph -> B e. { A , B , C } ) |
17 |
|
f1fveq |
|- ( ( F : { A , B , C } -1-1-> R /\ ( A e. { A , B , C } /\ B e. { A , B , C } ) ) -> ( ( F ` A ) = ( F ` B ) <-> A = B ) ) |
18 |
3 10 16 17
|
syl12anc |
|- ( ph -> ( ( F ` A ) = ( F ` B ) <-> A = B ) ) |
19 |
18
|
necon3bid |
|- ( ph -> ( ( F ` A ) =/= ( F ` B ) <-> A =/= B ) ) |
20 |
4 19
|
mpbird |
|- ( ph -> ( F ` A ) =/= ( F ` B ) ) |
21 |
2
|
simp2d |
|- ( ph -> A =/= C ) |
22 |
1
|
simp3d |
|- ( ph -> C e. Z ) |
23 |
|
tpid3g |
|- ( C e. Z -> C e. { A , B , C } ) |
24 |
22 23
|
syl |
|- ( ph -> C e. { A , B , C } ) |
25 |
|
f1fveq |
|- ( ( F : { A , B , C } -1-1-> R /\ ( A e. { A , B , C } /\ C e. { A , B , C } ) ) -> ( ( F ` A ) = ( F ` C ) <-> A = C ) ) |
26 |
3 10 24 25
|
syl12anc |
|- ( ph -> ( ( F ` A ) = ( F ` C ) <-> A = C ) ) |
27 |
26
|
necon3bid |
|- ( ph -> ( ( F ` A ) =/= ( F ` C ) <-> A =/= C ) ) |
28 |
21 27
|
mpbird |
|- ( ph -> ( F ` A ) =/= ( F ` C ) ) |
29 |
2
|
simp3d |
|- ( ph -> B =/= C ) |
30 |
|
f1fveq |
|- ( ( F : { A , B , C } -1-1-> R /\ ( B e. { A , B , C } /\ C e. { A , B , C } ) ) -> ( ( F ` B ) = ( F ` C ) <-> B = C ) ) |
31 |
3 16 24 30
|
syl12anc |
|- ( ph -> ( ( F ` B ) = ( F ` C ) <-> B = C ) ) |
32 |
31
|
necon3bid |
|- ( ph -> ( ( F ` B ) =/= ( F ` C ) <-> B =/= C ) ) |
33 |
29 32
|
mpbird |
|- ( ph -> ( F ` B ) =/= ( F ` C ) ) |
34 |
20 28 33
|
3jca |
|- ( ph -> ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= ( F ` C ) /\ ( F ` B ) =/= ( F ` C ) ) ) |