| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1dom3fv3dif.v |  |-  ( ph -> ( A e. X /\ B e. Y /\ C e. Z ) ) | 
						
							| 2 |  | f1dom3fv3dif.n |  |-  ( ph -> ( A =/= B /\ A =/= C /\ B =/= C ) ) | 
						
							| 3 |  | f1dom3fv3dif.f |  |-  ( ph -> F : { A , B , C } -1-1-> R ) | 
						
							| 4 | 2 | simp1d |  |-  ( ph -> A =/= B ) | 
						
							| 5 |  | eqidd |  |-  ( ph -> A = A ) | 
						
							| 6 | 5 | 3mix1d |  |-  ( ph -> ( A = A \/ A = B \/ A = C ) ) | 
						
							| 7 | 1 | simp1d |  |-  ( ph -> A e. X ) | 
						
							| 8 |  | eltpg |  |-  ( A e. X -> ( A e. { A , B , C } <-> ( A = A \/ A = B \/ A = C ) ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ph -> ( A e. { A , B , C } <-> ( A = A \/ A = B \/ A = C ) ) ) | 
						
							| 10 | 6 9 | mpbird |  |-  ( ph -> A e. { A , B , C } ) | 
						
							| 11 |  | eqidd |  |-  ( ph -> B = B ) | 
						
							| 12 | 11 | 3mix2d |  |-  ( ph -> ( B = A \/ B = B \/ B = C ) ) | 
						
							| 13 | 1 | simp2d |  |-  ( ph -> B e. Y ) | 
						
							| 14 |  | eltpg |  |-  ( B e. Y -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ph -> ( B e. { A , B , C } <-> ( B = A \/ B = B \/ B = C ) ) ) | 
						
							| 16 | 12 15 | mpbird |  |-  ( ph -> B e. { A , B , C } ) | 
						
							| 17 |  | f1fveq |  |-  ( ( F : { A , B , C } -1-1-> R /\ ( A e. { A , B , C } /\ B e. { A , B , C } ) ) -> ( ( F ` A ) = ( F ` B ) <-> A = B ) ) | 
						
							| 18 | 3 10 16 17 | syl12anc |  |-  ( ph -> ( ( F ` A ) = ( F ` B ) <-> A = B ) ) | 
						
							| 19 | 18 | necon3bid |  |-  ( ph -> ( ( F ` A ) =/= ( F ` B ) <-> A =/= B ) ) | 
						
							| 20 | 4 19 | mpbird |  |-  ( ph -> ( F ` A ) =/= ( F ` B ) ) | 
						
							| 21 | 2 | simp2d |  |-  ( ph -> A =/= C ) | 
						
							| 22 | 1 | simp3d |  |-  ( ph -> C e. Z ) | 
						
							| 23 |  | tpid3g |  |-  ( C e. Z -> C e. { A , B , C } ) | 
						
							| 24 | 22 23 | syl |  |-  ( ph -> C e. { A , B , C } ) | 
						
							| 25 |  | f1fveq |  |-  ( ( F : { A , B , C } -1-1-> R /\ ( A e. { A , B , C } /\ C e. { A , B , C } ) ) -> ( ( F ` A ) = ( F ` C ) <-> A = C ) ) | 
						
							| 26 | 3 10 24 25 | syl12anc |  |-  ( ph -> ( ( F ` A ) = ( F ` C ) <-> A = C ) ) | 
						
							| 27 | 26 | necon3bid |  |-  ( ph -> ( ( F ` A ) =/= ( F ` C ) <-> A =/= C ) ) | 
						
							| 28 | 21 27 | mpbird |  |-  ( ph -> ( F ` A ) =/= ( F ` C ) ) | 
						
							| 29 | 2 | simp3d |  |-  ( ph -> B =/= C ) | 
						
							| 30 |  | f1fveq |  |-  ( ( F : { A , B , C } -1-1-> R /\ ( B e. { A , B , C } /\ C e. { A , B , C } ) ) -> ( ( F ` B ) = ( F ` C ) <-> B = C ) ) | 
						
							| 31 | 3 16 24 30 | syl12anc |  |-  ( ph -> ( ( F ` B ) = ( F ` C ) <-> B = C ) ) | 
						
							| 32 | 31 | necon3bid |  |-  ( ph -> ( ( F ` B ) =/= ( F ` C ) <-> B =/= C ) ) | 
						
							| 33 | 29 32 | mpbird |  |-  ( ph -> ( F ` B ) =/= ( F ` C ) ) | 
						
							| 34 | 20 28 33 | 3jca |  |-  ( ph -> ( ( F ` A ) =/= ( F ` B ) /\ ( F ` A ) =/= ( F ` C ) /\ ( F ` B ) =/= ( F ` C ) ) ) |