Step |
Hyp |
Ref |
Expression |
1 |
|
f1cnv |
|- ( F : A -1-1-> B -> `' F : ran F -1-1-onto-> A ) |
2 |
|
f1f |
|- ( F : A -1-1-> B -> F : A --> B ) |
3 |
2
|
frnd |
|- ( F : A -1-1-> B -> ran F C_ B ) |
4 |
|
ssfi |
|- ( ( B e. Fin /\ ran F C_ B ) -> ran F e. Fin ) |
5 |
3 4
|
sylan2 |
|- ( ( B e. Fin /\ F : A -1-1-> B ) -> ran F e. Fin ) |
6 |
|
f1ofn |
|- ( `' F : ran F -1-1-onto-> A -> `' F Fn ran F ) |
7 |
|
fnfi |
|- ( ( `' F Fn ran F /\ ran F e. Fin ) -> `' F e. Fin ) |
8 |
6 7
|
sylan |
|- ( ( `' F : ran F -1-1-onto-> A /\ ran F e. Fin ) -> `' F e. Fin ) |
9 |
1 5 8
|
syl2an2 |
|- ( ( B e. Fin /\ F : A -1-1-> B ) -> `' F e. Fin ) |
10 |
|
cnvfi |
|- ( `' F e. Fin -> `' `' F e. Fin ) |
11 |
|
f1rel |
|- ( F : A -1-1-> B -> Rel F ) |
12 |
|
dfrel2 |
|- ( Rel F <-> `' `' F = F ) |
13 |
11 12
|
sylib |
|- ( F : A -1-1-> B -> `' `' F = F ) |
14 |
13
|
eleq1d |
|- ( F : A -1-1-> B -> ( `' `' F e. Fin <-> F e. Fin ) ) |
15 |
14
|
biimpac |
|- ( ( `' `' F e. Fin /\ F : A -1-1-> B ) -> F e. Fin ) |
16 |
10 15
|
sylan |
|- ( ( `' F e. Fin /\ F : A -1-1-> B ) -> F e. Fin ) |
17 |
9 16
|
sylancom |
|- ( ( B e. Fin /\ F : A -1-1-> B ) -> F e. Fin ) |
18 |
|
f1dom3g |
|- ( ( F e. Fin /\ B e. Fin /\ F : A -1-1-> B ) -> A ~<_ B ) |
19 |
18
|
3expib |
|- ( F e. Fin -> ( ( B e. Fin /\ F : A -1-1-> B ) -> A ~<_ B ) ) |
20 |
17 19
|
mpcom |
|- ( ( B e. Fin /\ F : A -1-1-> B ) -> A ~<_ B ) |