| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1cnv |
|- ( F : A -1-1-> B -> `' F : ran F -1-1-onto-> A ) |
| 2 |
|
f1f |
|- ( F : A -1-1-> B -> F : A --> B ) |
| 3 |
2
|
frnd |
|- ( F : A -1-1-> B -> ran F C_ B ) |
| 4 |
|
ssfi |
|- ( ( B e. Fin /\ ran F C_ B ) -> ran F e. Fin ) |
| 5 |
3 4
|
sylan2 |
|- ( ( B e. Fin /\ F : A -1-1-> B ) -> ran F e. Fin ) |
| 6 |
|
f1ofn |
|- ( `' F : ran F -1-1-onto-> A -> `' F Fn ran F ) |
| 7 |
|
fnfi |
|- ( ( `' F Fn ran F /\ ran F e. Fin ) -> `' F e. Fin ) |
| 8 |
6 7
|
sylan |
|- ( ( `' F : ran F -1-1-onto-> A /\ ran F e. Fin ) -> `' F e. Fin ) |
| 9 |
1 5 8
|
syl2an2 |
|- ( ( B e. Fin /\ F : A -1-1-> B ) -> `' F e. Fin ) |
| 10 |
|
cnvfi |
|- ( `' F e. Fin -> `' `' F e. Fin ) |
| 11 |
|
f1rel |
|- ( F : A -1-1-> B -> Rel F ) |
| 12 |
|
dfrel2 |
|- ( Rel F <-> `' `' F = F ) |
| 13 |
11 12
|
sylib |
|- ( F : A -1-1-> B -> `' `' F = F ) |
| 14 |
13
|
eleq1d |
|- ( F : A -1-1-> B -> ( `' `' F e. Fin <-> F e. Fin ) ) |
| 15 |
14
|
biimpac |
|- ( ( `' `' F e. Fin /\ F : A -1-1-> B ) -> F e. Fin ) |
| 16 |
10 15
|
sylan |
|- ( ( `' F e. Fin /\ F : A -1-1-> B ) -> F e. Fin ) |
| 17 |
9 16
|
sylancom |
|- ( ( B e. Fin /\ F : A -1-1-> B ) -> F e. Fin ) |
| 18 |
|
f1dom3g |
|- ( ( F e. Fin /\ B e. Fin /\ F : A -1-1-> B ) -> A ~<_ B ) |
| 19 |
18
|
3expib |
|- ( F e. Fin -> ( ( B e. Fin /\ F : A -1-1-> B ) -> A ~<_ B ) ) |
| 20 |
17 19
|
mpcom |
|- ( ( B e. Fin /\ F : A -1-1-> B ) -> A ~<_ B ) |